

SeaClouds Project

D2.2 Initial architecture and design of the

SeaClouds platform
Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based applications

Call identifier FP7-ICT-2012-10

Grant agreement no. Collaborative Project
Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP2. Requirements Analysis, overall Architecture and Standardization

Deliverable code D2.2
Deliverable Title Initial architecture and design of the SeaClouds platform
Nature Report
Dissemination Level Public
Due Date: M9
Submission Date: 7th July 2014
Version: 1.0
Status Final
Author(s): Javier Cubo, Ernesto Pimentel, Jose Carrasco and Francisco Duran (UMA),

Antonio Brogi, PengWei Wang and Michela Fazzolari (UPI), Elisabetta Di
Nitto and Raffaela Mirandola (POLIMI), Christian Tismer (NURO), Roman
Sosa and Francesco D’Andria (ATOS), Alex Heneveld and Andrea Turli
(Cloudsoft)

Reviewer(s) Francesco D’Andria (ATOS), Andrea Turli (CloudSoft)

 2 D2.2 Initial architecture and design of the SeaClouds platform

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 3 D2.2 Initial architecture and design of the SeaClouds platform

Table of Contents

1. Executive summary .. 7

2. Introduction ... 8

2.1 Scope and outcome of the Deliverable ... 8

2.2 Methodology ... 9

2.3 Overview of the Deliverable .. 10

2.4 Glossary of Acronyms .. 11

3. Challenges and Positioning of SeaClouds .. 12

3.1 Challenges and Objectives of SeaClouds ... 12

3.2 Positioning SeaClouds .. 14

4. SeaClouds Platform Stakeholders and Functionalities from the Requirements 16

5. Initial SeaClouds Reference Architecture .. 19

5.1 SeaClouds Reference Framework Requirements .. 19

5.2 SeaClouds Components implementing Functionalities ... 19

5.2.1. Discoverer Component .. 19

5.2.2. Planner Component ... 21

5.2.3. Deployer Component .. 24

5.2.4. Monitor Component .. 26

5.2.5. SLA Service ... 28

6. SoftCare Application case study .. 30

7. Cloud Gaming case study... 32

8. Conclusions .. 34

Annexes ... 35

A. Baselines in Cloud Computing Management and Interoperability 35

 4 D2.2 Initial architecture and design of the SeaClouds platform

A.1 Orchestration and adaptation in the cloud ... 35

A.2 Monitoring of multi-cloud services ... 36

A.3 Unified management of multi-cloud applications .. 37

A.4 Standards for cloud interoperability ... 37

A.5 Related Cloud initiatives .. 38

References ... 40

 5 D2.2 Initial architecture and design of the SeaClouds platform

List of Figures

Figure 1. Interaction among WPs and relation of D2.2 with other deliverables 8

Figure 2. Position of SeaClouds with respect to related initiatives 15

Figure 3. Initial Architecture of the SeaClouds Platform .. 19

Figure 4. Architecture of the SoftCare Application using SeaClouds 31

Figure 5. Adoption of SeaClouds in the Cloud Gaming Application 33

 6 D2.2 Initial architecture and design of the SeaClouds platform

List of Tables

Table 1. Acronyms .. 11

Table 2. Summary of the requirements defined in D2.1 and the associated use cases 17

Table 3. Discoverer Component description .. 21

Table 4. Planner Component description ... 24

Table 5. Deployer Component description .. 26

Table 6. Monitor Component description .. 27

Table 7. SLA Service description ... 29

Table 8. Modules of the Cloud Gaming application ... 33

 7 D2.2 Initial architecture and design of the SeaClouds platform

1. Executive summary

This deliverable, D2.2, aims to study and analyze the early architecture and design of the

SeaClouds platform. The initial requirements for the SeaClouds platform identified in

deliverable D2.1 [16] and also the case study described in deliverable D6.1 [17] are

considered to obtain the initial version of the architecture and design for the SeaClouds

platform, which will be required to get the final conceptual SeaClouds reference platform.

This report (to be delivered in month M9) will be continued and extended with a new and

final version of the SeaClouds architecture in the deliverable D2.4 Final SeaClouds

architecture (to be delivered in month M16).

The structure of this document is the following:

● Section 2 presents the scope of this document, lists the reference documents to

generate the deliverable, and describes the methodology used to obtain the

Architecture.

● Section 3 discusses the main objectives and challenges of SeaClouds, as well as

how the positioning and progress proposed as regards initiatives and standards

presented in Annex A.

● Section 4 provides a direct relationship between the requirements specified in the

deliverable D2.1 and the SeaClouds platform functionalities.

● Section 5 introduces an early architecture of the SeaClouds platform, as well as the

components that implement each functionality specified in the platform, with the

corresponding details of description.

● Sections 6 and 7 present the SeaClouds case studies: SoftCare application use case

and Cloud Gaming use case, and relate each one with the SeaClouds architecture.

● Section 8 concludes the document.

● Annex A presents the current initiatives and standards for Cloud Computing

management and interoperability.

 8 D2.2 Initial architecture and design of the SeaClouds platform

2. Introduction

This section introduces the deliverable D2.2 and presents its scope in the project. In

addition, the methodology used to obtain the SeaClouds architecture is described, as well

as an overview of the document.

2.1 Scope and outcome of the Deliverable

SeaClouds project works towards giving organizations the capability of “Agility After

Deployment” for cloud-based applications by taking care of different aspects of cloud

development life-cycle such as developing an open, generic and interoperable foundation

that enables orchestrating parts of applications, and a layer to monitor, manage and

migrate the underlying providers (both public and private PaaS/IaaS) based on informed

SLA compliance decisions to guarantee performance and QoS on multi-cloud

environments. Then, in order to achieve the main goal of the SeaClouds project, a first

version of the SeaClouds architecture need to be delivered.

This document is focused on the specification of the initial architecture and the design of

the SeaClouds platform. To obtain this early architecture, both the requirement

specification document presented in D2.1 and the extended description of the case

studies described in D6.1, have been analyzed in detail. This document is crucial for the

rest of the project, since the main technical work packages (WP3, WP4 and WP5) will

develop the corresponding components required for the SeaClouds platform according to

the initial architecture and design (and also considering the modifications in the final

version) of the SeaClouds platform. In Figure 1 are depicted the interactions among Task

2.2 (in which this deliverable D2.2 is generated) and tasks corresponding to other WPs.

Figure 1. Interaction among WPs and relation of D2.2 with other deliverables

 9 D2.2 Initial architecture and design of the SeaClouds platform

In this document, we intend to detail the architecture of the SeaClouds platform, detailing

each component composing the platform and their functionalities. Thus, each component

will be presented and detailed with its role, the corresponding inputs, outputs,

interdependencies with other components, the success criteria, and the delivery date.

This deliverable will also provide the correspondences between the current architecture

of the case studies to validate the project and the SeaClouds architecture, with the

purpose of applying the SeaClouds platform over this use cases.

The development of the SeaClouds Reference Architecture constitutes the first step

towards the creation of the system that will fulfil the SeaClouds vision.

SeaClouds provides the foundation for allowing “Agility After Deployment”
providing necessary tools and a framework for Modelling, Planning and Controlling
Cloud Applications.

SeaClouds answers questions such as: How can a complex cloud application be
deployed, managed and monitored over multiple and heterogeneous
infrastructures Clouds? How can the underlying cloud providers be monitored to
check for quality of service compliance? How can applications be reconfigured if any
problem or deviation from normal execution patterns is detected in any component
at run time?

2.2 Methodology

The methodology used to generate the design of the SeaClouds Reference Architecture

follows a set of steps as outlined below:

1. Review state-of-the-art. In Annex A are detailed the different works, initiatives

and standards to be used as baselines, and over which SeaClouds will advance and

contribute.

2. Description of case studies. In deliverable D6.1 are described the case studies,

which is required to obtain the requirements and functionalities to be offered by

the SeaClouds platform.

3. Analysis of requirements. In deliverable D2.1 a list of functional and non-

functional requirements, as well as the business goals and the constraints are

analyzed.

4. Definition of use cases. In D2.1 a list of use cases to be used is presented, which is

needed to obtain the stakeholders and final functionalities for the SeaClouds

platform.

 10 D2.2 Initial architecture and design of the SeaClouds platform

5. Mapping of the requirements to architectural components. In this deliverable, it

will be created descriptions (functionality offered and interoperation) for the

SeaClouds components, including the interactions and inputs/outputs, and

considering the use cases.

6. Design of the initial SeaClouds Reference Architecture. Once the previous steps

have been performed, then the SeaClouds Reference Architecture will be

detailed, whose design should satisfy both functional and non-functional

requirements and the interoperation issues.

7. Implementation of the SeaClouds components. In WP3 and WP4 the different

components will be implemented obtaining the proof-of-concepts. This is part of

the methodology since we will need the individual components to be later

integrated in the initial version of the platform, which will be analyzed to check if

some update is required in the final version of the architecture as regards the

initial one delivered in this document.

8. Integration of the SeaClouds components. In WP5 the components will be

integrated by using a software developing environment, and obtaining the

platform integration of the prototypes of the components. As in the previous

step, this integration is needed to check the architecture is appropriate to the

solution expected by the SeaClouds platform.

9. Evaluation and validation of the architecture. The initial (and the next and final

version) architecture will be will be evaluated based on evaluation scenarios in

WP6.

2.3 Overview of the Deliverable

The rest of this deliverable is organized as follows.

In Section 3, we discuss the main objectives and challenges of SeaClouds, as well as how

the positioning and progress proposed as regards initiatives and standards presented in

Annex A.

Section 4 provides a direct relationship between the requirements specified in the

deliverable D2.1 and the SeaClouds platform functionalities.

In Section 5, we introduce an early architecture of the SeaClouds platform, as well as the

components that implement each functionality specified in the platform, with the

corresponding details of description.

Sections 6 and 7 presents the SeaClouds case studies: SoftCare application use case and

Cloud Gaming use case, and relate each one with the SeaClouds architecture.

 11 D2.2 Initial architecture and design of the SeaClouds platform

Section 8 concludes the document.

Finally, Annex A presents the current initiatives and standards for Cloud Computing

management and interoperability.

2.4 Glossary of Acronyms

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

SLA Service Level Agreement

TOSCA Topology and Orchestration Specification for Cloud Applications

CAMP Cloud Application Management for Platforms

GUI Graphical User Interface

API Application Programming Interface

APP Application

DB Database

HDD Hard Disk Drive

RAM Random Access Memory

Table 1. Acronyms

 12 D2.2 Initial architecture and design of the SeaClouds platform

3. Challenges and Positioning of SeaClouds

In this section, we discuss about the main objectives of the SeaClouds project and how

SeaClouds will address challenges and specific objectives. Also we present the positioning

of SeaClouds as regards existing initiatives and standards in Cloud Computing

management and interoperability.

3.1 Challenges and Objectives of SeaClouds

The main objective focuses on the development of a novel platform that performs a

seamless adaptive multi-cloud management of service-based applications. And the

specific objectives of SeaClouds are the following (they can be also found in the DoW):

 O1) Orchestration and adaptation of services distributed over different cloud

providers.

 O2) Monitoring and run-time reconfiguration of services distributed over multiple

heterogeneous cloud providers.

 O3) Providing unified application management of services distributed over different

cloud providers.

 O4) Compliance with major standards for cloud interoperability.

For every specific objective, SeaClouds consortium plans to achieve certain challenges,

which are described in this section.

Challenges in orchestration and adaptation for the cloud.

Objective O1 will be addressed by developing adaptive orchestrators of cloud-based

application modules. Orchestrators are widely used in the service-oriented computing

paradigm [1-11], mainly focusing on behavioral and context-aware adaptation of services,

by coordinating the interactions between different services. In this context, services could

be dealt as cloud resources of modules of a complex cloud application.

Several approaches exist that target formal adaptation of orchestrated services (detailed

in Annex A), but, to the best of our knowledge, none of these approaches has been

extended to the cloud environment. Challenges such as heterogeneity of cloud platforms

and migration to different cloud providers have still to be addressed.

SeaClouds will address the following challenges in order to extend service-oriented

approaches to the cloud: (i) adaptation could be needed to take into account cloud

provider characteristics and Service Level Agreements (SLA), (ii) violations of Quality of

Service (QoS) properties need to be monitored across different cloud platforms (this

 13 D2.2 Initial architecture and design of the SeaClouds platform

challenge will be also tackled in the next objective), and (iii) dynamic architecture

reconfiguration might involve migrating some components of the application to other

cloud providers at runtime.

Challenges in monitoring of services on multiple clouds.

In order to address objective O2, SeaClouds' monitoring will use and enhance existing

monitoring functionalities for the PaaS and IaaS levels: (i) With respect to the IaaS level,

SeaClouds will reuse what is available (e.g., Brooklyn1 or the EU project MODAClouds;

both described in Annex A), and (ii) With respect to the PaaS level, SeaClouds aims at

augmenting the set of metrics currently available from Cloud4SOA (described in Annex A),

such as response time and up-time; and also to analyse the functionality of MODAClouds

which could be used in SeaClouds.

For both the IaaS as the PaaS level, SeaClouds aims at coordinating, monitoring and

aggregating monitoring information at the single service level to fulfill the purposes of

whole orchestration. Thus, SeaClouds aims at: (i) being able to monitor each application

component, and (ii) combining and aggregating the above mentioned data to highlight

performance problems and their impact.

Challenges in unified application management of services distributed over different

cloud providers.

SeaClouds will use existing management functionalities to address objective O3.

Specifically, (i) SeaClouds' discovery functionality may use and extend existing

matchmaking functionalities to match application requirements with PaaS offerings (in

principle, SeaClouds is thinking on a basic matchmaking service), and (ii) SeaClouds

management will use a REST harmonized API for the deployment, management and

monitoring of complex cloud-based applications across different and heterogeneous cloud

PaaS offerings.

SeaClouds intends to use Brooklyn's policy-driven functionality to integrate support for

IaaS providers. Moreover, Brooklyn's approach to policy modeling and enforcing can

provide guidance for SeaClouds' orchestration/adaptation and management functionality.

On the other hand, Brooklyn only targets the IaaS level and has no support for

orchestration. Beyond what Brooklyn provides, SeaClouds will therefore extend policy-

1 Brooklyn (http://www.brooklyn.io) is an open source, policy-driven control plane for distributed

applications delivered by CloudSoft (a member of the SeaClouds consortium).

http://www.brooklyn.io/

 14 D2.2 Initial architecture and design of the SeaClouds platform

driven functionality to the PaaS level and also add support for adaptation and

orchestration.

Challenges in standards for cloud interoperability.

SeaClouds intends to actively contribute to standards to achieve the objective O4.It plans

to contribute to the standardization effort of CAMP [12] (see Annex A) both by exploiting

CAMP-compliant interfaces provided by PaaS providers, and by contributing review

proposals that will possibly emerge while specifying properties of SeaClouds

orchestrations, adaptations and monitoring. CAMP is an OASIS initiative, and Brooklyn is

an implementation following the CAMP specification.

SeaClouds will exploit the TOSCA [14] (see Annex A) specification to drive the design of the

model for specifying cloud service orchestrations. In doing so, SeaClouds might actively

contribute to the standardization effort of TOSCA, by contributing review proposals that

will emerge while trying to devise TOSCA-compliant instances of the SeaClouds service

orchestration model. TOSCA is an OASIS initiative, and OpenTOSCA2 is an container

implementation following the TOSCA specification.

On the other hand, SeaClouds will also focus on developing functionalities that are

deliberately out of the scope of TOSCA to solve issues about policies for the dynamic

management of service orchestrations, which currently we are analysing. Although the

currently available implementations of TOSCA and CAMP do not yet support the

management of complex applications over multiple clouds, SeaClouds will work towards

building such management on top of them.

Due to a common partner in both initiatives, CAMP and TOSCA, (CloudSoft), Brooklyn can

also benefit from integrating SeaClouds' functionalities, especially regarding the

integration of adaptation techniques in supported policies.

3.2 Positioning SeaClouds

Figure 2 illustrates how SeaClouds intends to relate to the initiatives and standards

presented in Annex A with the purpose of achieving the goals and challenges previously

described.

In the figure, we can observe in the top layer the main components will be generated in

SeaClouds, and in the other layers we observe the relationships between every

2 OpenTOSCA (http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php) is an open source
browser-based TOSCA runtime environment for running TOSCA-based applications, delivered by
the Institute of Architecture of Application Systems (IAAS), University of Stuttgart.

http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php

 15 D2.2 Initial architecture and design of the SeaClouds platform

component of SeaClouds and the existing efforts, in order to perform the specific

objective of our platform.

Figure 2. Position of SeaClouds with respect to related initiatives

 16 D2.2 Initial architecture and design of the SeaClouds platform

4. SeaClouds Platform Stakeholders and Functionalities from the

Requirements

Analyzing the requirements described in the Deliverable D2.1 [16], we can devise the

following stakeholders and functionalities for the SeaClouds platform.

Stakeholders of the SeaClouds Platform:

● The Application Administrator oversees the correct execution of the application.

● The Application Designer designs the Application as an orchestration of services

and interacts with the SeaClouds Platform through the comprehensive GUI to

obtain a deployment plan.

● Cloud Providers provide the Cloud Resources (which offer some Cloud

Capabilities). They do not necessarily interact directly with the SeaClouds platform,

but the services offered are exploited by the platform to run service compositions.

SeaClouds requirements and associated use cases:

The table below provides a summary of the requirements defined in D2.1 and the

associated use cases. The table contains eight requirements of which two are general ones

that do not have a corresponding use case but encompass all uses of the SeaClouds

platform. These are the need for a Comprehensive Graphical User Interface (Requirement

5) and the fact that The SeaClouds platform must rely on standard APIs and languages

(Requirement 6).

The other requirements are fulfilled by the functionalities that will fulfill the eight use

cases listed in the tables. More details can be found in D2.1.

Requirement ID Short name UseCase ID Short name

Requirement5 Comprehensive
Graphical User
Interface

Requirement6 The SeaClouds platform
must rely on standard
APIs and languages

Requirement8

Requirement1

Orchestration
Specification reuse to
build different plans

QoS dependent
resource definition

UseCase1 Create a Deployment
Plan

Requirement2 Service Level UseCase2 Define Service Level

 17 D2.2 Initial architecture and design of the SeaClouds platform

Agreement Definition Agreement

Requirement3 SLA Assessing and
Violation Management

UseCase3 Manage Service Level
Agreement

Requirement4

Requirement3

Metric-Driven Policy-
Based Management

SLA Assessing and
Violation Management

UseCase4 Monitor periodically

Requirement4

Requirement3

Metric-Driven Policy-
Based Management

SLA Assessing and
Violation Management

UseCase5 Monitor on events

Requirement8 Orchestration
Specification reuse to
build different plans

UseCase6 Initialize Application
Deployment

Requirement9 Application updates UseCase7 Update Deployed
Application

Requirement7 Application Migration UseCase8 Application
Administrator
reconfigures the
application deployed
on multiple clouds.

 Table 2. Summary of the requirements defined in D2.1 and the associated use cases

SeaClouds Platform functionalities:

From an analysis of the requirements and the case studies summarized above and

described in detail in D2.1 the following functionalities emerge:

● SeaClouds Planner: functionality in charge of implementing planning policy to

orchestrate the multi-cloud deployment of the application modules (this fulfills

Use Cases 1 and 2).

● SeaClouds Controller: functionality in charge of implementing the multi-cloud

deployment of the application modules and SeaClouds monitoring policy. It is

composed of the SeaClouds Monitor (/Analyzer) and the SeaClouds Deployer (this

fulfills Use Cases 3, 4, 5, 6, 7 and 8).

● SeaClouds Deployer: functionality in charge of taking as input the orchestration

specification generated by the Planner, and deploying (by exploiting the Multi-

Cloud Deployment API) the application modules on the specified clouds (this fulfills

Use Cases 6, 7, and 8).

 18 D2.2 Initial architecture and design of the SeaClouds platform

● SeaClouds Monitor: functionality in charge of monitoring (by exploiting the

Monitoring API) that the QoS properties of the application modules are not

violated by the clouds in which they were deployed, and that the whole application

satisfies the QoS properties specified for the whole application (this fulfills Use

Cases 4 and 5). In D2.1 it was considered a component, the SeaClouds Analyzer,

separated from the Monitor, although some discussions have concluded wiht the

inclusion of this component inside the Monitor. Then, also the Monitor, with the

functionality of analyzing the violations, is in charge of generating the

reconfiguration suggestions (if needed) to be passed as inputs to the Planner

Component to trigger the generation of a new adaptive orchestration plan (this

fulfills Use Cases 3 and 8).

● SeaClouds Discoverer: this component was not considered as a independent

component in D2.1. However, it have been also discussed to be included in the

platform as a separate component with an own entity, which is in charge of

discovering available capabilities offered by cloud providers.

In the following we shortly describe how the SeaClouds stakeholders exploit the Seaclouds

platform with its functionalities.

The SeaClouds Platform interacts with the Application Administrator and the Application

Designer providing information about the status of the system as well as tools to

orchestrate the deployment of Application Modules into the available Cloud Resources.

SeaClouds Platform exposes SeaClouds API (Designer API, Discovery API, Monitoring API,

and Deployment API) to support the Application Designer in the analysis of Cloud

Capabilities offered by the available Cloud Resources, by using the SeaClouds Discoverer,

and in the creation of an effective Orchestration Specification. The Orchestration

Specification is expressed in TOSCA or CAMP and is generated by the SeaClouds Planner

starting from the specifications provided by the Application Designer. The Orchestration

Specification is exploited by the SeaClouds Controller (composed by the SeaClouds

Monitor(/Analyzer) and the SeaClouds Deployer) to orchestrate the deployment of

application modules to the available cloud resources.

The SeaClouds Platform monitors and analyzes the status of the Application to check the

violation of QoS constraints, and support the process of migrating Application Modules

distributed in heterogeneous Cloud Platforms. The SeaClouds Platform is able to manage

Cloud Resources depending on QoS Requirements and other limits.

 19 D2.2 Initial architecture and design of the SeaClouds platform

5. Initial SeaClouds Reference Architecture

This section describes the initial Seaclouds Reference Architecture and Design for the

SeaClouds platform.

5.1 SeaClouds Reference Framework Requirements

Figure 3 shows the initial architecture of the SeaClouds platform, with the basic

functionalities (in light blue), and relationships between the different components. Later,

each component will be described and its functionalities will be detailed.

Figure 3. Initial Architecture of the SeaClouds Platform

5.2 SeaClouds Components implementing Functionalities

This section describes the components and services, their interactions, and the

inputs/outputs of the platform, presented in Figure 3.

5.2.1. Discoverer Component

The following table describes the Discoverer component that allows discovering

capabilities and add-ons featured by available clouds. The inputs/outputs of this

component are described, as well as its interaction with the other SeaClouds components.

Component
Name

Discoverer

 20 D2.2 Initial architecture and design of the SeaClouds platform

Description/
Functionality

This sub-system is in charge of identifying the available
capabilities offered by cloud providers that will be used by the
Planner sub-system to perform a matchmaking process.
Available capabilities can include both

- Technology aspects, such as programming tools
(programming languages, available frameworks,
runtime environments, available database, database
dimension, number of instances, etc.), possible add-ons,
extensibility/scalability options and so on.

- SLAs including QoS properties (bandwidth, monthly
uptime percentage, etc) and the cost associated to each
provided service.

The trigger for this component is the time, in fact with a certain
frequency it gathers information from the cloud providers. This
information can be sent directly to the Planner and to the
dashboard and/or can be used to create a shared repository
that collects providers’ characteristics.

Responsibilities the data gathered by this component should be kept up-to-
date, as the Planner sub-system relies on this information to
match the requirements provided by a user with the available
capabilities offered by cloud providers.

Constraints -

Inputs Cloud provider capabilities and desired SLAs.

Outputs Cloud provider capabilities and SLAs to be sent to the planner
and the dashboard.

Interactions and
Interfaces

This component interacts with the Planner and the Dashboard.
The Planner will consume the result of the discoverer to
perform a matchmaking process and to decide where to deploy
each application module according to its QoS and technology
requirements.
The Dashboard will present the result of the discoverer to the
end- user.
Optionally, this component could also receive automatic
updates from cloud providers.

Implementation Currently we are analysing the best way to implement this
component, which in principle it will be implementing a basic
matchmaking mechanism. Some considerations for the
implementation are the following: this component relies on a
data repository that will include a profile for each cloud

 21 D2.2 Initial architecture and design of the SeaClouds platform

provider. Each profile describes the QoS properties guaranteed
by the cloud provider, the technology capabilities and the
offered standard SLA.
This repository can be accessed by the dashboard or it can be
accessed by the Planner.
This repository will be populated using the following strategies:

● Automatically by cloud providers: in an ideal situation
each cloud vendor keeps its profile updated in an
automatic way. The repository should be public and
shared.

● By sending polling requests to cloud providers: in this
case, the discoverer sub-system is responsible of asking
the cloud providers for their capabilities and add-on to
generate cloud profiles.

● By hand: if the previous ones are not feasible due to
technological restrictions, the repository could be
compiled by hand.

Platform
dependency

none
It mostly depends on the discovery API offered by each cloud
providers.

Success Criteria

The cloud-agnostic discovery layer, which discovers a set of
distinctive and overlapping properties, enables comparison and
matching of different providers’ offerings.
The user does not need to worry about the choice of a specific
provider which support the programming tools he/she uses,
but he/she can focus on development issues.

Delivery date ● M12, discovery functionalities: first specification and
early prototype.

● M18, discovery functionalities: complete specification,
formal definition and final documentation.

● M22, SeaClouds prototype: final integrated prototype.

Table 3. Discoverer Component description

5.2.2. Planner Component

The following table describes the Planner component that is in charge of generating a

distribution of application modules onto available clouds. The inputs/outputs of this

component are described as well as its interaction with the other SeaClouds components.

Component Name Planner

 22 D2.2 Initial architecture and design of the SeaClouds platform

Description/
Functionality

The SeaClouds Planner is in charge of determining a
distribution of application modules onto multiple available
clouds so that the QoS properties and other technology
requirements needed for individual application modules are
not violated.

The planner’s input are the QoS and technology, the
application topology, formulated by an application designer,
the adaptation rules, written from an application
administrator, and the discovered capabilities and SLAs coming
from the Discoverer component.

Using this complex inputs set, the planner will generate a set
of abstract deployment plans, each of which describes a
feasible distribution of application modules onto available
clouds, and satisfies all the QoS properties and technology
requirements required by the application designer.
These abstract plans and related SLAs are returned to the
application administrator, to support his decision.
Once the application administrator selects an abstract
deployment plan, it is then passed to the Deployer and
Monitor components simultaneously, and to the Planner itself.
With this, the Deployer will instantiate a concrete plan to
actual deploy the application modules.

During runtime, the Monitor will collect information about the
execution of the application. Any QoS violation is detected and
notified to the application administrator, so that she can
decide whether to accept to replan. If so, the replanning
trigger will be passed to the planner. Then, the planner tries to
replan, generates a new set of abstract deployment plans and
passes them to the deployment manager again. On the other
hand, whenever new cloud capabilities are discovered by the
Discoverer, the application administrator also can initiate a
replanning trigger. With these new cloud capabilities, the
planner then generates new abstract deployment plans.

Responsibilities It can input the requirements and application topology
submitted by the application designer. Moreover, it can
generate feasible abstract deployment plans that distribute
application modules onto multiple available clouds, and ensure
QoS and technology requirements are satisfied. Finally, it
allows the application administrator to initiate a replanning

 23 D2.2 Initial architecture and design of the SeaClouds platform

process.

Constraints The application topology is specified by exploiting a standard
specification (e.g., mainly we will use OASIS TOSCA and we will
continue studying CAMP for this end).
The application designer must provide the application modules
that compose the application, together with the set of inter-
module relationships (e.g., Module A communicates with
Module B, Module A is hosted on Module B).
For each (group of) application modules the application
designer should provide a set of technology and QoS
requirements.

Inputs QoS properties and technology requirements, application
topology, adaptation rules, available capabilities and SLAs, and
replanning trigger.

Outputs Abstract plans and related SLAs.

Interactions and
Interfaces

The Planner receives the requirements and application
topology from the application designer. It interacts with the
Discoverer component to acquire the available capabilities and
SLAs. It generates a set of abstract deployment plans and
returns them to deployment manager. It receives replanning
trigger from the Monitor component, and also from
deployment manager.

Implementation According to the requirements and application topology, the
Planner tries to distribute the application modules onto
multiple available clouds, in a convenient way, and ensures
that the QoS properties and technology requirements are
satisfied. This problem can be reduced to a matchmaking and
optimization problem, which have been widely studied in the
service-oriented computing paradigm, especially in the topics
of service discovery and QoS-aware service selection and
composition. Therefore, we can learn from these proven
methodologies, combined with the actual situation and
characteristics of cloud environment, and then propose some
simple and effective methods for such distribution.

Platform
dependency

It will depend on the outputs of Discoverer component

Success Criteria A tool to plan the distribution of application modules in
multiple available clouds.

 24 D2.2 Initial architecture and design of the SeaClouds platform

Delivery date ● M12, discovery, design and orchestration
functionalities: first specification and prototype.

● M18, discovery, design and orchestration
functionalities: complete specification, formal
definition and final documentation.

● M22, SeaClouds discovery and adaptation components
prototype.

 Table 4. Planner Component description

5.2.3. Deployer Component

The following table describes the Deployer component which interacts with platforms

where the application will be deployed. This component generates a concrete plan and

has the mechanisms to establish communication with the cloud providers in order to use

and orchestrate the several services exposed by the platforms to instantiate the

infrastructure components, call the different services and deploy the application

components.

Component Name Deployer

Description/
Functionality

The deployer is in charge of following the instructions coming
as a deployment plan (CAMP-compliant) from the Planner. It is
able to deploy the desired plan abstracting away the cloud-
specific functionalities of the different cloud providers that is
able to leverage, generating a concrete plan.
The Deployer will generate a live model of the managed
applications, storing the details about the deployed
applications.
It will have some healing capabilities to repair a managed
application that is violating one or more constraints.
Therefore, it has to monitor not only the deployment activities
but also the running applications and report the failures.

Responsibilities Since the plan is submitted to the Deployer sub-system, this
has to execute the plan to deploy or reconfigure the
application components in each target providers.

Constraints This sub-system needs to consume the cloud provider API. It
should be able to understand CAMP plans and to produce an
application deployment on a multi-cloud environment.

Inputs The plan describes the needed steps to deploy or reconfigure
the application. This plan has to be approved by the

 25 D2.2 Initial architecture and design of the SeaClouds platform

deployment manager.

Outputs A live model of the managed applications. A live model
contains the components and services used by an application,
the location for each of the application’s component and the
relationships among components and services.

Interactions and
Interfaces

The deployer receives the plan from the planner.
The sub-system interacts with the target platforms using the
needed services.

Implementation The Deployer component accepts a CAMP-compliant
deployment plan. It parses the plan and orchestrate the
deployment of each of the components/services described in
the plan on the target cloud provider(s), re-using as much as
possible a common abstract layer to consume IaaS and PaaS
API.
A storage system could be necessary to keep the credentials
needed to authenticate to the different cloud providers.
A parser has to be implemented, in order to analyze the
deployment plan.
A distinguishing aspect of the SeaClouds architecture is that it
builds on top of OASIS standards initiatives and the deployer
will initially use CAMP and we are planning to use the
reference implementation of the standard, an Apache
incubator project called Brooklyn, http://www.brooklyn.io. It is
worth notice that the Deployer does not require cloud
providers to be TOSCA or CAMP compliant, and it actually
generates concrete deployment plans for non TOSCA/CAMP
compliant providers as needed.

Platform
dependency

This sub-system depends on the Planner. The Deployer
component needs to generate a correct and concrete plan to
instantiate and deploy the application modules.

Success Criteria The expected result involves a correct plan execution to obtain
an instantiation/reconfiguration of the application modules on
the target environment.

Delivery date  M12, definition of the monitoring strategies (D4.1) – to be
included the multi-deployment strategies in this document.

 M12, Cloud Application Programming Interface (D4.2).

 M18, Unified dashboard and revision of Cloud API (D4.5).

 M22, prototype and detailed documentation of the

http://www.brooklyn.io/

 26 D2.2 Initial architecture and design of the SeaClouds platform

Seaclouds run-time environment components.

Table 5. Deployer Component description

5.2.4. Monitor Component

The Monitor component is in charge of timely collecting information on the whereabouts

of the execution of an application. Once an deployment plan has been chosen, together

with corresponding SLAs and adaptation rules, the monitor component is in charge of

attaching to the modules to be deployed an appropriate infrastructure to collect the

required information. These “attached observers” will provide continuous information

which will be used to detect situations in which the application deployment requires a

change. The information to be collected will depend on the adaptation rules to be

considered. The information collected may be either directly provided to the GUI (either

to directly show it or storing it in a DB for off-line analysis) or stored in a DB by the

Monitor so that both the user and the Monitor could access it (in this way, more

sophisticated adaptation rules might be considered). The following table describes the

Monitor component.

Component Name Monitor

Description/
Functionality

Given a set of SLAs (and probably adaptation rules) on an plan,
the component is responsible of collecting the information
read by the data collectors deployed with the components of
the application. The monitor module is in charge of collecting
and processing this information, forwarding it to the GUI after
its processing for visualization and analysis by the
administrator, and detecting situations in which replanning is
necessary.

Responsibilities This component assures the gathering of the monitoring
information, and the support for its analysis for the
appropriate implementation of the adaptation rules given (in
case they are considered), taking into account the provided
SLAs.

Constraints Maximize performance and amount of collected data and
minimize cost and performance degradation.

Inputs Available capabilities and a set of the services in the selected
deployment plan SLAs (and adaptation rules). Also, it has
knowledge about the live model storing information about
how the distribution of the application modules is done and

 27 D2.2 Initial architecture and design of the SeaClouds platform

deployed in cloud providers.

Outputs Monitoring information and replanning triggers.

Interactions and
Interfaces

The administrator provides, through the GUI, the deployment
plan, the SLAs (and adaptation rules) to be used (either directly
or choosing from a set of alternatives). The Monitor provides
the collected monitoring information (or the results from its
analysis) to the GUI for the administrator consultation, and
triggers a replanning if problematic situations that require it
are detected.

Implementation In a first version, it is being considered to extend the Brooklyn
monitoring functionalities. Also, a analysis of the
functionalities of MODAClouds that could be included are
being done. In this sense, a range of data collectors, for
different platforms and contexts, and providing different types
of information will be provided. All these data collectors will
match a particular format, so that they adjust to the common
monitoring infrastructure. This will allow us to later add further
data collectors for new platforms/needs, giving support for
potentially more powerful adaptation rules. The proposal in
the MODAClouds project using RDF streams and CSPARQL is an
interesting starting point.

Platform
dependency

Concrete data collectors will be very dependent on the
different cloud platforms. Since some providers supply tools
are not available for other providers, the same data collectors
cannot be used for all the platforms.

Success Criteria

The data collectors required for the main QoS properties will
be provided, together with the support for the considered
adaptation rules. Also, the analysis required by them will be
implemented.

Delivery date  M12, definition of the monitoring strategies (D4.1).

 M16, design of the run-time reconfiguration process (D4.3).

 M18, dynamic QoS verification (D4.4).

 M22, prototype and detailed documentation of the
Seaclouds run-time environment components.

Table 6. Monitor Component description

 28 D2.2 Initial architecture and design of the SeaClouds platform

5.2.5. SLA Service

The SLA service is in charge of mapping the low level information gathered from the

Monitor into business level information about the fulfillment of the SLA defined for a

SeaClouds application. The following table describes the SLA service.

Component Name SLA Service

Description/
Functionality

As in SeaClouds the service composition is very dynamic, we
have designed this SLA Service with an SLA management
framework to provide a generic end-to-end solution for SLA
definition and operational management embracing multi-
clouds services at IaaS and PaaS level. It provides an
operational management with SLA composition and
decomposition across functional and organizational Cloud
domains; and covers the complete SLA and service lifecycle
with consistent interlinking of planning and runtime
management aspects; and can be applied to a large variety of
industrial domains and use cases.

Responsibilities The SLA Service is responsible for establishing, reviewing and
cancelling of complex end-to-end- Service Level Agreements
(SLAs) between Application Providers and Cloud Suppliers. It
provides an operational management with SLA composition and
decomposition across functional and organizational Cloud domains.
It covers the complete SLA and service lifecycle with consistent
interlinking of planning and runtime management aspects by
implementing procedures and methods to evaluate and report
Business Level Objectives.

Constraints The SLA management strategy to be implemented should
consider two well-differentiated phases:

● The negotiation / preparation of the contract and
● The monitoring of its fulfillment in real-time

In the SLA context, Service Models refers to the resources
associated with the service execution and relationship of these
resources to each other, as well as the Cloud business/service
level objectives and Key Performance indicator (KPI) and Key
Quality Indicator (KQI) calculation used in the SLA.

Inputs Monitoring info.

Outputs Business SLA info.

Interactions and Interactions with the rest of components. While the Planner

 29 D2.2 Initial architecture and design of the SeaClouds platform

Interfaces component will provide the inputs to create the SLA
Agreements, the Deployer component will configure and set
up the SLA Service at runtime. Finally, the Monitoring
component will generate Business Metrics to evaluate
agreements.

Implementation Implementing procedures and methods to evaluate SLA
agreements by relying on monitoring to report, respond and
resolve SLA infringements.

Platform
dependency

Service Level Agreements corresponding to cloud providers.

Success Criteria

Investigating new methods and tools for the SLA design and
SLA Template Specification. Defining standards expression and
meaning for SLA metrics and business concepts. Implementing
a generic protocol to define the agreements, setting up targets
and thresholds in the SLA (based, e.g., on its capabilities and
feedback from its business).

Delivery date  M18, dynamic QoS verification and SLA management
approach (D4.4) – to be incorporated to this deliverable

 M22, prototype and detailed documentation of the
Seaclouds run-time environment components

Table 7. SLA Service description

Also, we consider in the SeaClouds architecture, the GUI, which features the graphical

user interface (SeaClouds GUI) for two user roles (Designers and Deployment Managers).

Application Designers use the GUI to provide a description of the topology of the

application to be deployed, together with a set of requirements. These requirements can

include QoS properties and technology requirements for the application modules.

Deployment Managers instead, exploit the GUI through a unified dashboard that allows

them to supervise the deployment and the monitoring of the application.

Finally, we have to design and generate the SeaClouds API, in order to define suitable

application programming interfaces to allow the communication among the different

SeaClouds components. Therefore, the above listed components are part of the

SeaClouds Engine, and they interact with the SeaClouds GUI and with external systems

through the SeaClouds APIs. SeaClouds is able to deploy, manage and monitor

applications on clouds that are compatible with TOSCA and CAMP. Moreover, it will be

compatible with a selected number of clouds (which will be studied in another

deliverable).

 30 D2.2 Initial architecture and design of the SeaClouds platform

6. SoftCare Application case study

In this section, we briefly present the adoption of the SeaClouds architecture as regards

the SoftCare Application (this will be analyzed in deep in other tasks and documents).

ATOS aims at providing an e-health and social care case study by developing a full-

featured business intelligence solution for assessing disease affecting elderly people.

The objective is to implement a Cloud-based social support network application that

provides the following features:

● Supporting maintaining health and functional capability, through the risk

assessment and the early detection of deterioration symptoms of the patients and

distress signs of their carers;

● Providing the means for the self-care and the self-management of chronic

conditions, through the development social networking as well as educational

tools;

● Enhancing the home-as-care environment through the provision of user-friendly

ICT tools for frequent, unobtrusive monitoring;

● Facilities for high-quality interaction between doctor and patients;

● Added-value features to create and maintain an easy-to-use web-based social

network for individual elderly persons, to stimulate elderly person and their

careers.

The SoftCare application is currently is a monolithic application (code written in one large

program, and not modular) that has been installed/tested in the ATOS data centre.

As part of the work in SeaClouds, the application will be refactored as a Cloud-Enabled

platform (the monolithic application will be decomposed into a set of web-based services

ready to be cloudified), comprised of three main subsystems:

● web-based environment: social networking utilities, communication with carer,

communication between the carers and medical personnel, educations tools.

● Monitoring system: development of smart devices for the conduction of remote

psychometric tests; video-conferencing utilities.

● Risk assessment and analysis tools: data mining capabilities, retrieving information

from psychometric tests, electronic health records, personal evaluations by

medical experts, etc.

A draft of the desired architecture is depicted in Figure 4:

 31 D2.2 Initial architecture and design of the SeaClouds platform

Figure 4. Architecture of the SoftCare Application using SeaClouds

Once the application is modularized, SeaClouds tools will help in the design, deployment,

monitoring and governance of the SoftCare solution.

 32 D2.2 Initial architecture and design of the SeaClouds platform

7. Cloud Gaming case study

In this section, we briefly present the adoption of the SeaClouds architecture as regards

the Cloud Gaming case study (this will be analyzed in deep in other tasks and documents).

Nurogames has many games in the market and in deployment state, some of them based

on Game Server Engines developed by Nurogames. The Game Server is responsible for

data consistency and cheating protection.

NURO’s cloud game case study is based on a Nurogames Engine (e.g. WebRpg or IsoGame)

in the following called SeaCloudsGame. These engines are used for games that are online

or will be launched soon.

NURO will modify its monolithic server approach to a cloud ready version. Also a testing

system for different scenarios will be developed.

The Designer uses the SeaClouds System to describe all modules, needed to deploy the

SeaCloudsGame.

This description consist of:

● type of module

● needed resources

● connection to other modules

● configuration, initialisation

● QoS and budget limits and how to handle violation

The early SeaClouds adoption for the Cloud Gaming application will consist on following

modules:

Name Type Resource Connection
to

Config, Init QoS

APP Webservice
with PHP

RAM: ca. 200
MB each
worker

DB, CRON Certificates,
DNS, IP, DB
creditals
SVN:php_code.t
gz

<=2sek
per
requests
<=50€
per
month

DB MySQL
compatible

HDD: 100GB
growing

APP Certificates,
DNS, IP,
SVN:dbdump.gz

<=50€
per
month

 33 D2.2 Initial architecture and design of the SeaClouds platform

CRON crontab wget APP Certificates,
DNS, IP,
crontab.txt
SVN:skripts.tgz

<=???€

Table 8. Modules of the Cloud Gaming application

Figure 5 presents the desired adoption of SeaClouds as regards the Cloud Gaming

Application.

Figure 5. Adoption of SeaClouds in the Cloud Gaming Application

 34 D2.2 Initial architecture and design of the SeaClouds platform

8. Conclusions

This deliverable presents the SeaClouds Reference Architecture and its main goal is to

perform a seamless adaptive multi-cloud management of service-based applications. In

order to achieve this main objective, SeaClouds addresses four challenges related to

orchestration in the cloud, monitoring of services on multiple clouds, unified application

management of services over different clouds, and standards for cloud interoperability.

We have detailed the different stakeholders and functionalities related to the SeaClouds

framework by using the requirements analyzed in deliverable D2.1.

Next, we have defined the architecture framework as a reference to establish the

components, their interactions, functionalities and inputs/outputs. The level of detail of

this deliverable does not cover the thorough implementation design of the architecture

components, since this information will be further provided within the context of work

packages WP3, WP4, WP5, and WP6, which will use the architecture reference.

Finally, the desired adoption of the SeaClouds architecture as regards the two case studies

(SoftCare Application and Cloud Gaming) have been provided. Anyway, this study will be

analyzed more in deep in future tasks and documents during the lifecycle of the SeaClouds

project.

 35 D2.2 Initial architecture and design of the SeaClouds platform

Annexes

A. Baselines in Cloud Computing Management and Interoperability

This annex presents the current works, initiatives and standards for Service Composition

and Cloud Computing management and interoperability.

A.1 Orchestration and adaptation in the cloud

Orchestrators are widely used in the services computing paradigm [1, 2, 3, 4, 5, 6, 7, 9, 10,

11], mainly focusing on behavioural and context-aware adaptation of services, by

coordinating the interactions between different services. Several approaches exist that

target formal verification and adaptation of orchestrated services, but, to the best of our

knowledge, none of these approaches has been extended to the Cloud environment. This

implies that extending such approaches to the Cloud is a progress beyond the state of the

art. A cloud-compliant orchestration is not a trivial problem: challenges such as

heterogeneity of Cloud platforms and migration to different Cloud providers have to be

addressed, as well as the different standards emerging from distinct vendors. Therefore,

existing approaches should be (substantially) extended to operate on heterogeneous

Cloud providers. In the following we first present the state of the art in adaptation via

orchestration, and subsequently the challenges that SeaClouds will address to extend this

state of the art to the Cloud.

Restrictive approaches

A first class of existing works can be referred to as restrictive approaches [1, 3, 10, 11].

These approaches try to solve interoperability issues [5] by pruning the behaviours that

may lead to mismatch, thus restricting the functionality of the services involved.

General limitations of restrictive approaches are: (i) lack of support for automatic

adaptation at signature level, i.e. when operations present mismatches in their names or

arguments, and (ii) weak support to enforce any properties beyond deadlock freedom.

Generative approaches

A second class of solutions, which can be referred to as generative approaches [2, 5, 6, 7,

8, 9], avoid the arbitrary restriction of service behaviour, and support the specification of

advanced adaptation scenarios. Generative approaches build adaptors automatically from

an abstract specification of how the different mismatch situations can be solved. These

specifications are often referred to as the adaptation contract. Although generative

approaches result in a more general and satisfactory solution while composing and

 36 D2.2 Initial architecture and design of the SeaClouds platform

adapting services, writing the adaptation contract is a difficult and error-prone task.

Adaptation contracts, which match the operations required by the services, may contain

incorrect correspondences between operations in service interfaces or syntactic mistakes,

which are particularly common in cases where the contract has to be specified using

cumbersome textual notations.

In [6] is presented a toolbox that fully supports the adaptation process, including: (i)

different methods to construct adaptation contracts involving several services; (ii)

simulation and verification techniques which help to identify and correct erroneous

behaviours or deadlocking executions; and (iii) techniques for the generation of

centralized or distributed adaptor protocols based on the aforementioned contracts. The

techniques proposed to support the adaptation contract construction drastically reduce

the time spent to build the contract and the number of errors made during this process.

A.2 Monitoring of multi-cloud services

The EU FP7 Cloud4SOA project (www.cloud4soa.eu) provides an open source

interoperable framework for application developers and PaaS providers. Cloud4SOA aims

at supporting developers in deploying and monitoring their application with the ultimate

objective of reducing the risk of vendor lock-in. The monitoring is based on unified

metrics, but Cloud4SOA monitors each application separately and it is not able to

aggregate monitoring results of multi-component applications.

The monitoring platform developed in MODAClouds overcomes the limitation of the one

offered by Cloud4SOA by gathering data of various kinds from components, containers

and cloud resources distributed and replicated on multiple clouds. The main

characteristics of this monitoring platform are the following:

1. It supports distributed monitoring through the installation of proper data

collectors that can probe data from various sources.

2. It enables monitoring at different abstraction levels (e.g., the hypervisor, the

virtual machine, the PaaS-level container, the application code).

3. It allows application designers and operators to define monitoring rules that state

the object of monitoring, the frequency of monitoring, the metric to compute (it

could be the average value, the maximum value, etc), the set of values that are

assumed correct, the action to be taken in case the monitoring platform identifies

some incorrect value.

4. It offers proper APIs to develop new data collectors thus extending the kinds of

information that can be acquired by the monitoring platform.

 37 D2.2 Initial architecture and design of the SeaClouds platform

The open source software and additional information on the approach can be found here

http://www.modaclouds.eu/software/monitoring/.

Several commercial and open source initiatives target monitoring of cloud applications.

Often these initiatives address only particular platforms, for example Appsecute

(http://www.appsecute.com) monitors only (open-source) CloudFoundry-based

platforms. More platform-independent technologies are available for the IaaS level, since

the latter has undergone a stronger harmonization effort. Deltacloud

(http://deltacloud.apache.org) encapsulates the native API cloud provider to enable

management of resources in different IaaS platforms, such as Amazon EC2. Rightscale

(http://www.rightscale.com) supports monitoring several public (e.g., Amazon Web

Services, Rackspace) and private IaaS clouds (e.g., CloudStack, Eucalyptus, OpenStack).

Truly platform-independent monitoring solutions exist, the most known being NewRelic

(http://www.newrelic.com). NewRelic achieves platform-independency by requiring each

provider to implement a monitoring component and to integrate it in the offered cloud

platform. On the one hand, this approach yields the best results from a monitoring point

of view. On the other hand, it forces providers to invest quite some resources in order to

implement the monitoring.

A.3 Unified management of multi-cloud applications

Brooklyn (http://www.brooklyn.io) is an open source, policy-driven control plane for

distributed applications delivered by CloudSoft (a member of the SeaClouds consortium).

It enables single-click deployment of applications across machines, locations and clouds.

Then it continuously optimizes running applications to ensure ongoing compliance with

policies. Brooklyn uses two open source tools to operate on cloud resources, Apache

Whirr (http://whirr.apache.org) and Jclouds (http://www.jclouds.org), which support

several IaaS providers. The already mentioned Cloud4SOA project also offers deployment

and lifecycle management functionality using a harmonized API layer to encapsulate the

providers' APIs.

A.4 Standards for cloud interoperability

CAMP (Cloud Application Management for Platforms) [12, 13] aims at defining

harmonized APIs, models, mechanisms and protocols for the self-service management

(provisioning, monitoring and control) of applications in a PaaS, independently of the

cloud provider. However, CAMP is only a protocol specification, so it needs to be

implemented by parties adopting the protocol.

http://www.modaclouds.eu/software/monitoring/
http://www.appsecute.com/
http://deltacloud.apache.org/
http://www.rightscale.com/
http://www.brooklyn.io/
http://whirr.apache.org/
http://www.jclouds.org/

 38 D2.2 Initial architecture and design of the SeaClouds platform

The OASIS TOSCA (Topology and Orchestration Specification for Cloud Applications) [14,

15] aims at enabling the inter-operable description of application and infrastructure cloud

services, the relationships between parts of the service, and the operational behaviour of

these services, independently from the cloud provider.

By increasing service and application portability in a vendor neutral ecosystem, TOSCA

aims at enabling portable deployment to any compliant cloud, smoother migration of

existing applications to the cloud, as well as dynamic, multi-cloud provider applications.

A.5 Related Cloud initiatives

It is important to stress the fact that SeaClouds approach uses adaptation via

orchestration and therefore it does not require code modifications to existing services.

There are several initiatives and standards that target services deployed on the cloud, and

aim at guaranteeing properties such as Quality of Service of those services. These

initiatives use different approaches, with the consequence that software developers need

to either use special APIs or programming models to code their applications, or to model

them using project-specific domain languages. Some of these projects are mentioned in

following.

The Broker@Cloud project (http://www.broker-cloud.eu/) aims at helping enterprises to

transition to the cloud while enforcing quality control on the developed services.

Capabilities for cloud service governance and quality control such as lifecycle

management, dependency tracking, policy compliance, SLA monitoring, and certification

testing are included in the project. Nonetheless, Broker@Cloud targets a brokering

architecture, where the above mentioned services are available, and therefore cannot

change the orchestration of the deployed services to adapt to changing conditions.

The MODAClouds project (http://www.modaclouds.eu/) also aims at providing quality

assurance during the application life-cycle, support migration from cloud to cloud when

needed, and techniques for data mapping and synchronization among multiple clouds. In

order to do so, MODAClouds requires software developers to adopt a Model-Driven

Development approach. This approach has therefore, differently from SeaClouds, an

impact on the code that needs to be deployed on the cloud.

Also the PaaSage project (http://www.paasage.eu/) has Quality of Service as one of its

goals. PaaSage also intends to match application requirements against platform

characteristics and make deployment recommendations and dynamic mapping of

components to the platform(s) selected for the application instantiation. Analogously to

MODAClouds, it also requires the developers to adopt a modeling language in order to

specify the model of the application.

http://www.broker-cloud.eu/
http://www.modaclouds.eu/
http://www.paasage.eu/

 39 D2.2 Initial architecture and design of the SeaClouds platform

The mOSAIC project (http://www.mosaic-cloud.eu/) aims at providing developers with

vendor agnostic APIs, so that the resulting applications can be deployed on different IaaS

using a sort of mOSAIC virtual machine. mOSAIC plans also to support SLA negotiation

(with monitoring to detect SLA violations) and application life-cycle, but requires

developers to adopt the project's API.

http://www.mosaic-cloud.eu/

 40 D2.2 Initial architecture and design of the SeaClouds platform

References

1. M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHESIS: A Tool for Automatically

Assembling Correct and Distributed Component-based Systems. In Proceedings of the

29th International Conference on Software Engineering (ICSE ’07), pages 784–787. IEEE

Computer Societyn (2007)

2. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation. The

Journal of Systems and Software, 74:45–54, 2005. Special Issue on Automated

Component-Based Software Engineering (2005)

3. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of ICSOC ’06,

volume 4294 of LNCS, pages 27–39. Springer (2006)

4. A. Brogi, J. Camara, C. Canal, J. Cubo and E. Pimentel: Dynamic contextual adaptation.

In: In Proc. of Fifth International Workshop on the Foundations of Coordination Languages

and Software Architectures 2006 (FOCLASA'06), vol. 175, no. 2, 81-95, Elviser (2007)

5. C. Canal, Poizat P., Salaun, G.: Model-Based Adaptation of Behavioural Mismatching

Components. IEEE Transactions on Software Engineering 34, 546-563 (2008)

6. J. Camara, J.A. Martn, G. Sala•un, J. Cubo, M. Ouederni, C. Canal and E. Pimentel: Itaca:

An integrated toolbox for the automatic composition and adaptation of web services. In:

Proc. of International Conference on Software Engineering 2009 (ICSE'09),627-630, IEEE

Computer Society Press (2009)

7. J. Cubo and E. Pimentel: Damasco: A framework for the automatic composition of

component-based and service-oriented architectures. In: In I. Crnkovic, V. Gruhn, M. Book

(editors), European Conference on Software Architecture 2011 (ECSA'11), Lecture Notes in

Computer Science 6903, 388-404, Springer-Verlag (2011)

8. J.A. Martín, F. Martinelli, E. Pimentel. Synthesis of Secure Adaptors. JLAP, 81(2):99 – 126

(2012)

9. R. Mateescu, P. Poizat and G. Salaün. Adaptation of Service Protocols using Process

Algebra and On-the-Fly Reduction Techniques. IEEE Transactions on Software Engineering,

2012, IEEE Computer Society Press, pp. 755-777 (2012)

10. H. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-Automated

Adaptation of Service Interactions. In Proceedings of the 16th International Conference on

the World Wide Web (WWW ’07), pages 993–1002. ACM (2007)

 41 D2.2 Initial architecture and design of the SeaClouds platform

11. H. Nezhad, G.Y. Xu and B. Benatallah: Protocol-aware matching of web service

interfaces for adapter development. In: Proc. of 19th International Conference on World

Wide Web 2010 (WWW'10), 731-740, ACM (2010)

12. OASIS: CAMP 1.0 (Cloud Application Management for Platforms), Version 1.0.

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/ (2012)

13. OASIS: Cloud Application Management for Platforms (CAMP) Technical Committee

Charter. https://www.oasis-open.org/committees/camp/charter.php (2013)

14. OASIS: TOSCA 1.0 (Topology and Orchestration Specification for Cloud Applications),

Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf (2012)

15. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

Technical Committee Charter. https://www.oasis-

open.org/committees/tosca/charter.php (2013)

16. SeaClouds Project: Requirements for the SeaClouds Platform (SeaClouds Consortium).

http://www.seaclouds-project.eu/deliverables/SeaClouds-D2.1-

Requirements_for_the_SeaClouds_Platform.pdf (2014)

17. SeaClouds Project: Case Study extended description (SeaClouds Consortium).

http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-

Case_study_extended_description.pdf (2014)

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html/
https://www.oasis-open.org/committees/camp/charter.php
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
https://www.oasis-open.org/committees/tosca/charter.php
https://www.oasis-open.org/committees/tosca/charter.php
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2.1-Requirements_for_the_SeaClouds_Platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D2.1-Requirements_for_the_SeaClouds_Platform.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-Case_study_extended_description.pdf
http://www.seaclouds-project.eu/deliverables/SeaClouds-D6.1-Case_study_extended_description.pdf

