
	
	

SeaClouds	Project	

D5.4.2	-	Second	version	of	sw	platform	

Project	Acronym	 SeaClouds	
Project	Title	 Seamless	 adaptive	 multi-cloud	 management	 of	 service-

based	applications	
Call	identifier	 FP7-ICT-2012-10	
Grant	agreement	no.	 Collaborative	Project	
Start	Date	 1st	October	2013	
Ending	Date	 31st	March	2016	
	
	
	
	
	
	
Work	Package	 WP5	Integration,	infrastructure	delivery	and	GUI	
Due	Date:	 M2	
Submission	Date:	 13th	October	2015	
Version:	 1.1	
Status	 Final	
Author(s):	 Andrea	Turli	(Cloudsoft)	

Michele	Guerriero	(Polimi)	
Diego	Pérez	(Polimi)	

Reviewer(s)	 Roman	Sosa	Gonzales	(Atos),	Christian	Tismer	(NURO)	
	 	

	 2	D5.4.2	–	Second	version	of	sw	platform	

Dissemination	Level	
Project	co-funded	by	the	European	Commission	within	the	Seventh	Framework	Programme	

PU	 Public	 X	
PP	 Restricted	to	other	programme	participants	(including	the	Commission)	 	
RE	 Restricted	to	a	group	specified	by	the	consortium	(including	the	Commission)	 	
CO	 Confidential,	only	for	members	of	the	consortium	(including	the	Commission)	 	

	
	

Version	History	
Version	 Date	 Comments,	Changes,	Status	 Authors,	contributors,	

reviewers	
0.1	 29/9/2015	 Initial	draft	 Andrea	Turli	
0.5	 10/10/2015	 Polimi	contributions	 Diego	Perez,	Michele	

Guerriero	
1.0	 13/10/2015	 Applying	official	template	 Andrea	Turli	
1.1	 13/10/2015	 Addressed	review	comments	 Andrea	Turli,	Roman	Sosa	

Gonzales	
	 	 	 	
	 	 	 	

	
	 	

	 3	D5.4.2	–	Second	version	of	sw	platform	

1. Table	of	Contents	
2. Executive	Summary	...	4
3. Introduction	..	5
3.1. Glossary	of	Acronyms	...	5

4. Short	overview	of	the	SeaClouds	platform	...	6
5. The	SeaClouds	framework	for	continuous	integration	and	deployment	7
5.1. Development	cycle	...	7
5.2. Github	flow	...	8
5.3. Deploy	Maven	artifacts	to	Sonatype	..	8
5.4. How	to	release	SeaClouds	..	8

6. Installation	and	deployment	scripts	..	9
6.1. Run	SeaClouds	..	9

7. The	SeaClouds	testbed	..	13
8. Conclusion	...	15
	
	
	 	

	 4	D5.4.2	–	Second	version	of	sw	platform	

2. Executive	Summary	
The	 objective	 of	 this	 deliverable	 is	 to	 give	 an	 overview	 of	 the	 final	 SeaClouds	
integrated	 prototype	 as	 outcome	of	 the	 implementation	work	 done	 in	 the	 technical	
work	 packages	WP3	 and	WP4,	where	 the	main	 activities	 so	 far	 are	 concentrated	 in	
Deliverables	D3.1,	D3.2	D4.1	and	D4.2.		
	
The	 document	 overviews	 the	 tools	 implemented	 by	 M22	 and	 describe	 all	 the	
necessary	process	to	install	and	configure	the	system.		
	 	

	 5	D5.4.2	–	Second	version	of	sw	platform	

3. Introduction	
	
This	 deliverable	 describes	 the	 software	 development	 process	 and	 tools	 adopted	 to	
implement	the	SeaClouds	platform.		
	
This	deliverable	references	other	deliverables	where	appropriate	to	avoid	repetitions.		
	
This	document	is	structured	as	follows:	

• Section	 4	 is	 an	 overview	 of	 the	 SeaClouds	 components	 that	 constitutes	 the	
entire	platform.		

• Section	 5	 contains	 the	 overview	 of	 the	 development	 tools	 and	 pipelines	
adopted	by	the	consortium.	

• Section	6	explains	how	to	install	SeaClouds	platform.	
• Section	7	describes	the	SeaClouds	testbed.	

	

3.1. Glossary	of	Acronyms	
Acronym	 Definition	
AAM	 Abstract	Application	Model	
API	 Application	Program	Interface	
DBMS	 DataBase	Management	System	
GUI	 Graphical	User	Interface		
IaaS	 Infrastructure	as	a	Service	
JSON	 JavaScript	Object	Notation	
MVC		 Model	View	Controller	
PaaS	 Platform	as	a	Service	
QoB	 Quality	of	Business	
QoS	 Quality	of	Service	
REST	 REpresentational	State	Transfer	
SLA	 Service	Level	Agreement	
VM	 Virtual	Machine	
YAML	 YAML	Ain't	Markup	Language	

Table	1:		Glossary	of	acronyms	

	
	

	 6	D5.4.2	–	Second	version	of	sw	platform	

4. Short	overview	of	the	SeaClouds	platform	
	
This	section	gives	an	overview	of	the	current	state	of	the	software	architecture	of	the	
SeaClouds	 platform	 in	 order	 to	 make	 this	 deliverable	 self-contained.	 For	 a	 detailed	
description	 of	 the	 platform	 architecture,	 readers	 are	 referred	 to	 deliverable	 D5.1.3	
[D513].	

The	software	platform	is	composed	of	six	main	components,	which	are	subdivided	into	
modules,	namely	Dashboard,	Deployer,	Discoverer,	Monitor,	Planner	and	SLA	Service.	
Figure	 1	 shows	 the	 modules	 of	 each	 component	 and	 the	 communication	 messages	
between	components.	

SeaClouds	user	interacts	with	the	Dashboard	to	describe	the	application	to	deploy	and	
specify	the	Quality	of	Service	with	which	the	application	should	run.	Result	of	this	step	
is	 the	 abstract	 application	 model	 (AAM)	 which	 is	 given	 to	 the	 Planner.	 Then,	 the	
Planner	 creates	 a	 Deployable	 Application	 Model	 (DAM)	 that	 contains	 all	 the	
information	necessary	to	deploy	an	application	and	where	each	module	of	the	user’s	
application	has	been	assigned	 to	a	convenient	cloud	 resource.	 In	order	 to	unveil	 the	
possible	cloud	offers	onto	which	the	modules	of	the	user	application	can	be	deployed,	
the	 Planner	 uses	 the	 Discoverer	 functionality,	 that	 finds	 different	 public	 cloud	
resources	 together	 with	 both	 their	 technical	 (e.g.,	 amount	 of	 RAM)	 and	 quality	
properties	(e.g.,	availability	of	the	resource).	During	the	DAM	generation,	SLA	Service,	
Monitor	 and	Deployer	 components	 are	 requested	 to	 generate	 the	 part	 of	 the	 DAM	
regarding	 the	 application	 SLA,	 the	 monitoring	 rules	 and	 the	 repairing	 policies,	
respectively.	 The	 modules	 that	 offer	 these	 “generation”	 functionalities	 have	 been	
included	 in	 the	 architecture	 recently	 in	 order	 to	 improve	 the	 inter-component	
communication.	 A	more	 detailed	 description	 of	 these	modules,	 their	 dependencies,	
interfaces,	used	 libraries	and	programing	 languages	 is	given	 in	 the	deliverable	of	 the	
Final	Integrated	Platform	[D513].

The	 proposed	DAM	by	 the	Planner	 is	 passed	 to	 the	Dashboard,	where	 the	 user	 can	
confirm	 the	 proposed	 deployment.	 Then,	 the	 DAM	 is	 passed	 to	 the	Deployer	 which	
deploys	 the	 application	 through	 the	Apache	Brooklyn	engine	enhanced	 in	 SeaClouds	
project	with	capabilities	to	support	PHP	applications	and	CloudFoundry	and	OpenShift	
PaaS	(the	later	is	currently	under	development).	Again,	a	more	detailed	description	of	
these	 new	 deployment	 capabilities	 can	 be	 found	 in	 Deliverable	 5.1.3	 [D513].	 The	
Deployer	 is	 also	 able	 to	 repair	 it	 through	 scaling	 techniques	 and	 it	 monitors	 the	
behavior	of	 some	parameters	of	 the	application.	During	 the	application	 runtime,	 the	
Monitor	collects	data	of	its	behavior,	QoS	and	resource	consumption.	The	SLA	Service	
is	 subscribed	 to	 the	Monitor	 and	 therefore	 it	 is	 informed	of	 violations	of	 the	quality	
requirements	of	 the	application.	Both	the	 information	from	the	Monitor	and	the	SLA	
Service	is	passed	to	the	Dashboard,	hence	the	user	can	see	graphically	the	QoS	offered	
by	its	application	to	clients,	the	resource	consumption	of	the	application	and	the	SLA	
violations.	

	 7	D5.4.2	–	Second	version	of	sw	platform	

Figure	1:	Components,	modules	and	connectors	of	the	SeaClouds	software	architecture	

	

5. The	 SeaClouds	 framework	 for	 continuous	 integration	
and	deployment	

	

	
Figure	1:	Development	pipeline	

	

5.1. Development	cycle
The	 official	 repository	 for	 source	 code	 is	 hosted	 at	
https://github.com/SeaCloudsEU/SeaCloudsPlatform	 and	 it	 contains	 all	 the	 code	
developed	for	the	SeaClouds	Platform.	
	
SeaClouds	consortium	decided	to	not	rely	on	formal	code	review,	which	can	be	difficult	
and	 inaccurate,	 but	 it	 relies	 on	 a	 lightweight	 code	 review.	 In	 this	 context,	 for	
lightweight	we	mean	that	reviews	are	often	done	as	part	of	the	normal	development	
process,	 but	 because	 the	 development	 team	 is	 highly	 distributed	 we	 rely	 on	
collaborative	 tool	 to	 follow	 techniques	 recommended	 in	 Extreme	 Programming,	 like	

	 8	D5.4.2	–	Second	version	of	sw	platform	

Pair	 Programming	 and/or	 usage	 of	 tool-assisted	 code	 review	 such	 as	 GitHub	 Pull	
Requests,	gist	and	gitter.im.	

5.2. Github	flow	
Because	of	 the	agreement	on	the	development	workflow,	we	get	 inspired	by	GitHub	
Flow	 https://guides.github.com/introduction/flow/	 where	 each	 developer	 forks	 on	 its	
own	GitHub	 space	 the	 official	 repository.	 A	 fork	 is	 a	 copy	 of	 the	 original	 repository.	
Forking	 a	 repository	 allows	 you	 to	 experiment	 with	 changes	 without	 affecting	 the	
original	project.	Once	the	developer	is	happy	with	the	status	of	the	implementation	of	
a	 new	 feature	 or	 of	 a	 bug	 fixing,	 he	 opens	 a	pull	 request	 (PR)	 and	 asks	 for	 a	 code	
review	from	another	developer	or	the	product	owner.	If	the	developer	doesn’t	specify	
a	 reviewer,	 the	 board	 of	 project	 owners	 nominate	 at	 least	 one	 developer	 (different	
from	 the	 PR	 owner)	 as	 reviewer.	 Finally,	 if	 the	 project	 owner	 likes	 your	 work,	 they	
might	pull	your	fix	into	the	original	repository	
The	code	review	happens	publicly	on	discussions	on	the	Github	PR	or	gitter.im	and	in	
order	 to	be	accepted	a	PR	needs	 to	get	 at	 least	 a	 `+1`	 (as	usual	 in	Apache	Software	
Foundation	projects)	or	a	`lgtm`	(look	good	to	me)	
	
In	 parallel	 with	 the	 code	 review,	 a	 continuous	 building	 system	 has	 been	 set	 up	 to	
checkout	the	code	contained	in	the	PR,	compile	it,	test	it,	and	report	on	the	Github	PR	
page	 the	 result	 of	 the	 build.	 This	 happens	 for	 all	 the	 PRs	 and	 mitigate	 the	 risk	 to	
checkout	 code	 that	 breaks	 the	 build	 of	 the	 main	 project.	 SeaClouds	 is	 using	
https://travis-ci.org/	 as	many	 other	 successful	 opensource	 projects	 to	 implement	 the	
Continuous	Building	pipe.	Travis	easily	sync	your	GitHub	projects	and	is	able	to	test	the	
code	in	minutes	by	simply	configuring	the	Github	repository	with	a	.travis.yml	file.	

5.3. Deploy	Maven	artifacts	to	Sonatype	
SeaClouds	is	a	java-based	project	built	using	Apache	Maven.	Travis-CI	takes	care	of	the	
build	 but	 also	 takes	 care	 of	 the	 deployment	 of	 the	 generated	 artifacts	 to	 a	 public	
Maven	repository.	In	particular,	the	build	is	able	to	produces	SNAPSHOT	and	RELEASE	
artifacts,	 so	 any	 time	 a	 new	 commit	 is	 added	 to	 the	 master	 branch	 of	
SeaCloudsEU/SeaCloudsPlatform	 repository,	 all	 the	 generated	 artifacts	 from	 a	
successful	build	are	pushed	to	Sonatype	OSS.	This	space	has	been	formally	requested	
on	behalf	of	the	SeaClouds	consortium	and	it	stores	the	last	5	SNAPSHOT	releases	of	
SeaClouds	platform.		
Once	 the	 consortium	 agrees	 on	 cutting	 a	 new	 official	 release,	 it	 is	 then	 pushed	
manually	to	Maven Central.	

5.4. How	to	release	SeaClouds
The	 production	 of	 a	 SeaClouds	 official	 release	 has	 been	 kept	 manual	 for	 obvious	
reasons.	In	order	to	release	a	new	version,	those	are	the	main	steps	needed:	
	
mvn clean install	If	everything	is	ok:	

	 9	D5.4.2	–	Second	version	of	sw	platform	

mvn -DdryRun=true release:prepare -DreleaseVersion=0.7.0-M19 -Dtag=0.7.0-M19
-DdevelopmentVersion=0.8.0-SNAPSHOT	 and	 wait	 for	 a	 message	 like	 Release
preparation simulation complete.
	
Then,	run	proper	the	maven	release	command		
$	mvn	release:clean	
$	mvn	release:prepare	-DreleaseVersion=0.7.0-M19	-Dtag=0.7.0-M19	-
DdevelopmentVersion=0.8.0-SNAPSHOT	
$	mvn	release:perform	
	
Finally	test	the	staging	repository	just	created,	and	promote	the	release,	if	everything	
looks	good.	
	

6. Installation	and	deployment	scripts	
This paragraph explains how to install SeaClouds platform using Apache Brooklyn. If
you are running on a *nix machine, the following commands will be useful.
	
Download latest Apache Brooklyn release from brooklyn.io
$ wget https://www.apache.org/dyn/closer.lua/incubator/brooklyn/apache-
brooklyn-0.8.0-incubating/apache-brooklyn-0.8.0-incubating-bin.tar.gz
Untar Apache Brooklyn
$ tar -zxf apache-brooklyn-0.8.0-incubating-dist.tar.gz
$ cd apache-brooklyn-0.8.0-incubating
Download seaclouds-catalog.bom
$ wget http://git.io/vCJE9
Run Apache Brooklyn with seaclouds catalog
$ bin/brooklyn launch --catalogAdd seaclouds-catalog.bom

where bom is Brooklyn Object Model.

6.1. Run	SeaClouds		
Once	you	run	Apache	Brooklyn	with	the	seaclouds’s	catalog.bom	added,	you	will	have	
2	new	applications	available	
	
Run	SeaClouds	on	BYON	
By	selecting,	“SeaClouds	Platform	on	BYON”	you	can	deploy	SeaClouds	on	2	nodes	that	
Apache	Brooklyn	can	reach.	BYON	stands	for	Bring	Your	Own	Node,	and	requires	the	
user	 to	 specify	 the	 IP	 addresses	 of	 the	 target	 nodes	 that	 will	 host	 the	 SeaClouds
platform.	

	 10	D5.4.2	–	Second	version	of	sw	platform	

Figure	2:	Deploy	SeaClouds	on	your	own	nodes	

	
For	 the	 user’s	 convenience,	 SeaClouds	 provides	 a	 Vagrantfile	 to	 provision	 2	 Ubuntu	
12.04	64bit	servers	that	can	be	used	to	deploy	SeaClouds	on	BYON.	
	
Checkout	SeaClouds	distribution	
$ git clone git@github.com:SeaCloudsEU/SeaCloudsPlatform.git 	
	
Move	to	byon	folder	
$ cd SeaCloudsPlatform/byon	
	
Launch	Vagrant
$ vagrant up 	
	
Run	Apache	Brooklyn	from	byon	using:	
$BROOKLYN_HOME/bin/brooklyn launch --catalogAdd ../seaclouds-catalog.bom

	 11	D5.4.2	–	Second	version	of	sw	platform	

	
Figure	3:	Confirm	the	default	values	for	BYON	

	
	
	 	

	 12	D5.4.2	–	Second	version	of	sw	platform	

Run	SeaClouds	on	a	cloud	
	
Similarly,	to	the	previous	case,	you	can	easily	deploy	SeaClouds	platform	to	AWS	EC2	
using	the	following	application	item:	
	

Figure	4:	Select	deployment	on	a	cloud	provider	

	
	

Be	sure	to	edit	the	`identity`	and	the	`credential`	fields	with	the	AWS	"Access	Key	ID"	
and	"Secret	Access	Key",	respectively.	
	
	
	 	

	 13	D5.4.2	–	Second	version	of	sw	platform	

7. The	SeaClouds	testbed	
In	this	Section	we	describe	the	SeaClouds	testbed,	which	has	been	set	up	with	the	aim	
of	having	a	testing	platform	available	during	the	development,	in	particular	during	the	
last	phases	in	which,	in	parallel	with	the	last	developments,	the	process	of	components	
integration	started.	
	
The	main	goal	of	the	SeaClouds	testbed	is	to	provide	a	way	to	test	each	component,	or	
a	 set	 of	 integrated	 components,	 in	 an	 isolated	 fashion.	 The	 ideal	 users	 of	 the	
SeaClouds	testbed	are	mainly	the	SeaClouds	developers	and	case	studies.	
The	SeaClouds	testbed	has	been	accomplished	by	creating	an	Amazon	Machine	Image	
(AMI)	on	Amazon	EC2,	already	equipped	with	all	the	necessary	software	dependencies	
and	 with	 a	 set	 of	 utility	 scripts	 helping	 the	 user	 to	 easy	 set	 up	 her	 own	
testbed,according	to	the	SeaClouds	components	she	want	to	test	together.		
The	AMI	comes	with	Ubuntu	14.04	installed	and	is	publicly	accessible.	It	can	be	found	
by	filtering	the	public	AMI	 list	 from	the	AMI	menu	of	the	EC2	console,	 looking	for	 its	
name	(SeaClouds	Testbed),	as	shown	in	the	following	picture:	
	

Figure	5:	Provisioning	of	SeaClouds	AMI	on	AWS	EC2	

	
When	 a	 virtual	 machine	 instance	 is	 launched	 from	 the	 SeaClouds	 testbed	 AMI,	 it	
comes	with	number	of	 folders	 located	 in	 the	 root	of	 the	ubuntu	user.	Each	 folder	 is	
dedicated	 to	 a	 single	 SeaClouds	 component	 and	 contains	 all	 the	 requirements	 for	
running	 it,	 from	 the	 component	 artifact	 to	 any	 other	 further	 required	 dependency.	
Each	 folder	 also	 contains	 starter	 and	 stopper	 scripts	 for	 the	 associated	 component.	
Ideally	the	SeaClouds	testbed	user	just	have	to	play	with	these	scripts	 in	order	to	set	
up	her	own	testbed.		
The	 following	 picture	 shows	 the	 output	 of	 tree	 -L	 2	 issued	 from	 the	 home	 of	 the	
ubuntu	user.	
	

	 14	D5.4.2	–	Second	version	of	sw	platform	

	
An	 example	 of	 a	 SeaClouds	 testbed	 use	 case,	 which	 actually	 happened	 during	 the	
development,	is	the	ATOS	case	study	which	at	a	given	point	wants	for	some	reasons	to	
test	its	application	against	just	the	runtime	environment	of	the	SeaClouds	platform.	In	
this	case	the	developer	can	launch	an	instance	from	the	available	testbed	AMI,	access	
the	 instance	 via	 ssh	 and	 run	 the	 starter	 scripts	 of	 each	 desired	 component;	 in	
particular	 for	having	 the	 runtime	platform	 running,	 she	will	 start	 the	SeaClouds	SLA,	
Monitor	 and	 Deployer.	 At	 this	 point,	 each	 component	 is	 up	 and	 running	 and	 the	
developer	can	run	its	test.	

	 15	D5.4.2	–	Second	version	of	sw	platform	

8. Conclusion	
This	deliverable	describes	 the	main	 technologies	but	most	 importantly	 the	processes	
that	SeaClouds	development	team	relied	on	to	develop	the	SeaClouds	platform.	
	
The	 development	 process	 has	 been	 highly	 influenced	 by	 Agile	 methodologies,	 XP	
programming	 and	 some	 of	 the	 most	 popular	 and	 appreciated	 tools	 in	 the	 OSS	
community,	 which	 has	 proven	 effective	 in	 a	 variety	 of	 geographically	 distributed	
development	teams.	
	
The	 SeaClouds	 consortium	 decided	 to	 adopt	 Continuous	 Integration	 to	 significantly	
reduce	 integration	 problems,	 allowing	 a	 team	 to	 develop	 cohesive	 software	 more	
rapidly.		
CI	is	a	software	development	practice	where	members	of	a	team	integrate	their	work	
frequently,	 leading	 to	 multiple	 integrations	 per	 day.	 This	 is	 possible	 because	 the	
consortium	 maintain	 a	 Single	 Source	 repository,	 hosted	 at	 GitHub	 where	 each	
developer	Commits	to	the	Mainline	as	soon	as	she	has	a	bug	fix	or	a	new	feature.	This	
process	is	guarded	by	the	so	called	GitHub	Flow.	
Each	integration	is	verified	by	an	automated	build	(including	test)	done	by	TravisCI	to	
detect	integration	errors	as	quickly	as	possible.	
	
Key	practices	to	keep	the	CI	effective	are	also:	

• fix	Broken	Builds	immediately:	this	is	a	responsibility	of	everyone	in	the	team	
• keep	the	Build	fast:	which	is	continuously	improved	with	a	continuous	serie	of	

refinement	steps	

For	 more	 details	 about	 those	 practices,	 please	 start	 from	 the	 great	
http://www.martinfowler.com/articles/continuousIntegration.html	
	
	

