sSeaCclLOUuUDS

AGILITY AFTEer DePLoYmenT

Modelling Planning Confrolling

{8/ t2dzRa t N2 2$

S5pdn dm

LYAGAFt OSNE

Project Acronym
Project Title

Callidentifier

Grant agreement no.
Start Date

Ending Date

Work Package
Deliverable code
Deliverable Title
Nature
Dissemination Level
Due Date:
Submission Date:
Version:

Status

Author(s):

Reviewer(s)

SeaClouds

Seamless adaptive multlioud management of servideased
applications

FPZICT201210

610531

1* October 2013

31% March 2016

WP5 Integration, infrastructure delivery and GUI

D5.4.1

Initial version of sw platform

Prototype

Public

M12

10" October 2014

1.0

Final

Miguel Barrientos (UMA), Jose Carrasco (UMA), Javier
(UMA), Francesco D'AndriATOS), Adrian Nieto (UM#
Roméan Sosa (ATOS)
CN} yO0Saoz

5Q! YRNAI 06! ¢h{ 0

SeacLoubs D5.4.1- Initial version of sw platfor
Modeling Planning Controlling

Dissemination Level

Project cefunded by the European Commission within the Seventh Framework Programn

PU Public X
PP Restricted to other programme participantisicluding the Commission)

RE Restricted to a group specified by the consortium (including the Commissiof

CcoO Confidential, only for members of the consortium (including the Commission

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

Table of Contents

JLIE= L1 (S0 @] o] (=T o PP 3
EXECULIVE SUMMALY.....ci ittt e e e e e e snnnnneeeee e e e e e e s e ennnenn]
R [1 o o 11 Tox [0 o [PPSR 8
I A I3 o Ao 0] 1Y/ 0 R 8
2. Services and fUNCHONAITIESu.uureiiiiiiiiiirr e aaeeees 9
2.1 Discoverer and Planner..........coouiiiiiiiiiiiiiiiiiiiiiieetiiiiviee e 10
2.2 DBPIOYEN ... e e 11
/2 T o T 11 () PP 12
2 T T 0T T= T o PSR 12
p S I ST = o = P 12
T O 0T L= 0 {2t 110 1[0 o PR 13
3.1 Deployer: BrooKlyn CONCEPLS......cc.uuuriiiiiiiiiaeeeee ettt e e e e e 13
3.1.1 Sensors and EffECLOLS........cuuuviiiiiiiiiiiiiiiiiii e e e e e e e e 13
3.1.2 ConfIQUIatioN........ccoeeiiiee i 14
3.2 Deployer: PHP SUPPQLL........uuuiiiiiiiiiiiiiiiiiiee et e e 14
3.2.1 Implementing an ENtity...........uuuueieiiieccce e 14
3.2.2 Key Steps to Implement an ENtity................ooovviiiiiieiiiiiiceeeeeeeeeeeeeeeees 15
3.2.3 PHP ENULIES .. . eee s e e e e e e e e e e e e et e e e e e et e e eeeeeeeeeeeeeeannssnnnnes 16
3.2.4 Generic PHP classes (abstraction lenvel)...........cccccceiiiiiiiiiiiiiiiee 17
G TRC T |V (o 1 (o) gl g T=Tod o F= T £ o U P TP 24
R Tt R I - - i (== o £ 24
3.3.2 POlICES. e —————————— 27
3.4 Dashboarcode deSCrPLION.uiiii ettt e e e e e e 27
3.5 SLA Service cOde deSCIPON........cceiiiiiiiiie e eeee et e e e e e e e e e e e eaeeeenne 28
I A U= o0]| (0] oYU PTTT PR 28
3.5.2 ASSESSIMENL.....uuiii ittt e e et e e e e et e e eaeae 29
3.5.3 SLAMANAGEE . ..ttt 29
4. Installation and CONfIQUIATION.eiiiiiiiiii e 30
4.1 Deployer and Monitor (and Dashboard).............oouuiiiiiiiiiiiiiii e 30
4.1.1 Brooklyn Installation...............ooooiiiiiiiiiiiieeeeeeeeeeeeeee s 30

4.1.2 Prer@QUISIEES.....cooi ittt s 31

SeacLoubs D5.4.1- Initial version of sw platforn_

Modsaling Planning Controlling

4.1.3 Brooklyn Configuration............cccooeiieiiiiiiieec e 31
4.2 SLA Service INSLallatiOn............uviiiiiiiiieeeee e 31
o R o L= To [N 1=] PRSP 32
4.2.2 Creating the mysgl database...........ciiiiiiiiiiiiii e 32
4.2.3 CONfIQUIALION. ..ottt e e e 32
4.2.4 COMPIALION. ...ttt e e e e e e e e e e e 33
4.2.5 RUNNING. ..ottt e e e e e e e e e e e e e e e e e eeeeeeans 33
A ST =T 1T PP 33
4.3 DEMO EXECULION.euiiiiiiiieiiieeiitt ittt e e e e e e e e e e neeeees 33
5. CONCIUSION.....ceiiie ettt e et e e e e e e e s st e et e e e e e e e e e nenneees 35

. R I CINCES. ... oo e e e e e e 36

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

List of Figures

FIGURE 1: SEACLOUCD®MPONENTS/TOOLSBEDEVELOPED..........ccooviiiiiiiiieeee. 9
FIGURE 2: SEACLOUCODSPONENTS/TOOLS IRXBLE AT M12.....ccooiiiiiiiiiiiieeee 10
FIGURE 3. OVERVIEWTBIE PHP INTEGRATDDASS DIAGRAM.........ccvvviiiiiiiiiiinneee 17
FIGURE 4. ABSTRAGITIBVEL CLASS DIABRA. ... 18
FIGURE 5. APACHE VBERVER CLASS DIAGRAM. ...t 23
FIGURE 6. DATA FEBIERARCHY. ..o 25
FIGURE 7. ADDSENSDRSS DIAGRAM. ... oot 26
FIGURE 8. SLA REFORIY ARCHITECTURE.........iiie e 28

FIGURE 9. ASSESSMBIEHAVIOUR........uuiiiiiiiise e 29

SeacLoubs D5.4.1- Initial version of sw platforn_

Modeling Planning Controlling

List of Tables

TABLE 1. ACRONYMS ... e 8
TABLE 2. DATABASENNBCTION DATBASE...... e 19
TABLE 3. PHPWEBAPPBUWAREPROCESS CONHYG........ovviiiiiiee e 19

TABLE 4. APACHE SBERISAVAILABLES.o 22

SeacLoubs D5.4.1- Initial version of sw platfor

Modaling Planning Controling

Executive Summary

The objective of this deliverable is to give an overview of the first SeaClouds integrated
prototype as outcome of the implementation work done in the technical work packages
WP3 and WP4, where the main activities so far are concentrated in Deliverabliesia3l

and D4.2.

The document overviews the tools implemented by M12 and describe all the necessary
process to install and configure the system.

SeacLoubs D5.4.1- Initial version of sw platforn_

Modsaling Planning Controlling

1. Introduction

The deliverable D5.4.5 thefirst deliverable ofD5.4.X saga. It overviews the SeaClouds
software tools which havéeenimplementedduring the course of thérst twelve months

We have tried to keep the deliverable short, in order not to repeat any information already
available from previous deliverables. These deliverables have been reéerembere
appropriate.Anyway, some important aspects related to the implementations are implicitly
described in this document.

The structure othe document is as follows.

First,in Section 3ywe provide a list of servicdanctionalities implemented at MI2 and brief
descriptions of themSection 4describes how the code is organizead Section Sexplains
how to configure and install, as well as howuse the prototypelast,Section 5 concludes
the deliverable.

1.1List of Acronyms

Acronym Definition
SaaS Softwareasa-Service
PaaS Platformasa-Service
laaS Infrastructureasa-Service
QoS Quality of Service
QoB Quality of Business
SLA Service Level Agreement
TOSCA Topology and Orchestration Specification for Cloud Applications
CAMP CloudApplication Management for Platforms
GUI Graphical User Interface
API Application Programming Interface
APP Application
DB Database
WP Work Package
DAM Deployable Application Model
YAML YAML Ain't Another Markup Language

Tablel. Acronyms

SeacLoubs D5.4.1- Initial version of sw platforn_

Modaling Planning Controlling

2. Servicesand functionalities

Currently, several SeaClouds fyoare accomplished. In Figurevé present the services and
components, as well as the interaction amatihg components of theSeaClouds platform
which should be implemented at the end of the project-ifecle.

Discoverer (\
Module . Assess QoB
Profile Matchmaking Metrics
SN
Abstract Install & Violati
- iolation
Topology App. Model Optimizator (Cost — Configure Complex
WorkLoad/QoS) Metrics
\ GUI) Planner Service _ SLA Service / Moniforing
Deployable App. E>
Maodel (Policies) Alerts
Re-planning |:>
action
App
Developer Gov.
Assess QoS
Persistent Policies Manager QoS Alerts Metrics
Layer __ Gu

App. Governance
Instaill & Cloud

Configure

Deployer Service

Monitorin
Monitoring ;(
Govern Scale (up/down) Ad Ap;.) fo
minitrator

laa$ Unified Layer Paas$ Unified Layer
Cloud Cloud Cloud
Resource 1 Resource 2 Resource n

Figurel: SeaClouds components/tools to be developed

The Figurel represents the steps necessary to carry out an application deployment from
the initial stage where the Application Developer (amskr) provides the Application Model
consisting of theModule Profile and the Topology representing the connections among the
modules of the cloud application to be deploy¢other elements as the SLA restrictions and
policiesare considered by SeaClouds3,is describeth detail in Deliverable DB[1] related

to the desigrtime. After the Abstract Application Model has been specified, SeaClouds
starts the Discoverer and Planner process (note that the Discoverer is included into the
Planner service in the figure). It consists of two processes: Matchmaking amdiZpt also
explained in Deliverable D3.1][

Then, as result of the Planner,Ceeployable Application Mod€DAM) which specifies the

cloud services used to distribute the application, is generated by the Plaiiher.DAM
generated allows the deploymyeli 2 F (G KS | LI AOF GA2y Qa Y2Rdz S
PaaS,using the Deployecomponent, more detailed in Deliverable D4.1.[2Dnce the
application are deployed and managed by the Deployer, this notifies to the Monitor for
initializing the monitoring of the applicationswhich connects with the SLA service to
manage the violations of the QoS and QoB, and properties.

A GUI as Dashboard is also used for the interaction with the Application Administrator. Note
that a Persistent Layer should be consebk to maintain a continue store (e.g., the QoS

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

violations).

Since the SeaClouds project is in its first year, in Figure 2, only the SeaClouds functionalities
implemented in this first iteration of the project, month M12, are depicted (green sticks),
marking the functionalities not considered for the review demo (red cross) and those which
are under implementation (TODO).

Along this document we will explain the different components implemented for this initial
version of the software platform of SeaCloutlée refer to the technical documents, D3.1,
D4.1 and D4.2 (for the API) [3] to know more about every component or service. In fact, the
services or functionalities not implemented yet or under implementation has not been
included in this document.

For exanple, the Matchmaking process is a work in progress, and we pretend to present a
simple matchmaking in the demo review (depending on the results on some issues we are
analyzing as regards the algorithms we are implementing), although some implementation
details have to be concreted, so we have decided to include the description of the

Matchmaking in the next deliverable, and here only in the next section a brief section will be
dedicated to the Discoverer and the Planner.

&
70 D0
Module

Profile Marchmaking

Discoverer
Assess QoB
Metrics

S

stract Install Violati
Ab. il & iolation
App. Model Optimiz Cost Configure Complex

WO%OS) Metrics
Planner Service SLA Service Monitoring

Deployable App.

Model (Palicies) : Alerts
Re-planning
action

Topology

GUI

App

Developer Gov.

Assess QoS
Persistent Policies Manager QoS Alerts Metrics
Layer \ GUI)
App. Governance
nstall & Cloud
. nrigure . .
Deployer Service 9 Monitorin]

Monitoring
Govern Scale (up/down) App
Adminitrator
laas Unified Layer Paas$ Unified Layelx

Cloud Cloud Cloud
Resource 1 Resource 2 Resource n

Figure2: SeaClouds components/tools available at M12

2.1 Discoverer and Planner

In the Deliverable D3.1, we have already presented the functionality of these two
components, thus here we only mention the main functionalities of both.

Together with the description othe user input (the Application Model), the Planner

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

component needs to know which are the possible services available from cloud providers.
Multiple cloud resources can be offered by cloud providers at different levels of abstraction.
This is the main takof the Discoverer.

On the other hand, the Planner component is in charge of providing an Abstract
Deployment Plan (ADP) that defines where each application module will be deployed (and
used to generate the final Deployable Plan, see next section).

Givena set of modules with their requirements, the topology of the application and a set of
cloud resources, the Planner will generate an ADP that meet the requirements specified by
the user. The ADP includes the concrete services associated with each Bade aratlithe
policies to manage the scaling mechanism of each module.

The generation of the ADP can be performed in two steps (see Deliverable D3.1 for more
details): 1) Matchmaking: this first step aims to identify the cloud resources that are suitable
to allocate each module, and 2) Optimization: once a set of suitable cloud services have
been identified for each modules, an optimization process can be performed.

2.2 Deployer

In the previous Deliverable D4.1, we introduced the Deployer as the SeaCloudsnemhpo
responsible for the application module distribution across selected cloud providers. In this
section, we describe the current status of the multideployment description and the support
technologies, following the figure that represents the initial atetture of the deployer,
proposed in the Deliverable D4.1

In the architecture it is depicted how the deployer is composed by several elements. The
main element of our SeaClouds Deployer is the Deployer Engine. The Dehluyiee
receives a Deployable Application Plan through its Deployer API and executes the DAM. As
the Deployer Engine is clowdjnostic it is able to deploy applications to the different cloud
provider services using multiple Cloud Adapters. Once the apipiic has been deployed,

the Deployer Engine uploads the live model which contains the data structure (components
and relationship between these) in order to maintain topology of the application.

Currently, for the first draft we use Brooklyn as Deployagige to accomplish the
multideployment of the applications component and the Live Model generation and
management. The applications components could be deployed over different cloud
providers simultaneously (using jClouds [4] like Cloud Adapters). ®herd#fie application
topology status is stored in the Live Model using several XML files. Although, these files are
stored over the local file system, they could be deployed over a BlobStore (or PaaS Store
service) of the any cloud provider supported byetlCloud Adapters. In any case, the
Deployer Engine is charge of modify the Live Model to maintain the integrity with the live
real distribution status.

Regarding the supported technologies, PHP application support has been added to Brooklyn
in order to albw the deployment, management and monitoring of our early case study,
Nuro Application which was developed using PHP (Section 5 of the Deliverable 4.1).

When we add PHP support to Brooklyn, we are adding PHP application description to the
Deployable Applation Model automatically, so currently this technology could be used
from the DAM.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

2.3Monitor

In this section we will describe the status of the current implementation regarding the
Monitor component in SeaClouds. Monitor component is in charge of retrietitieg
monitoring data from deployed applications, making it available to the rest of the
components in SeaClouds. Also, it is responsible for the control and enforcement of QoS
properties and SLA, as well as forwarding violations on these properties tmt#rested
subscribed modules. The retrieved data and related information must be completely
available through the Monitor API.

Following the monitor architecture introduced in the Deliverable 4.1, the Monitor
functionality is centralized on the MonitognManager, which acts as a registry for new

FLILX AOFGA2ya RSLIX28SR FyR AGQa Ffaz G4KS YSOf
Monitoring agents by retrieving it, exposing it through the Monitor APl and storing it for

later usage and analysis.

Regardhg the Monitoring Agents, and as an initial approach, we make use of Brooklyn as
the main Monitoring Agent, making use of the management capabilities and mechanisms
incorporated in this tool, such as sensors, data feeds, enrichers and policies. Theseuallo

to define new data retrieving mechanisms for any application managed by SeaClouds that
will be gathered as QoS properties on the Monitor platform. An overall view of the kind of
metrics retrieved by Brooklyn can be found in the Annex C of Delivedabl@hese metrics
cover different kind of application and infrastructure monitoring giving a general description
of the managed cloud system.

In the following releases of the Monitor component, several other Monitoring Agents will be
included, making wesof the abstraction layer that these Agents propose in order to retrieve
a wider family of metrics from the rest of the levels of the application.

2.4 Dashboard

The current functionality implemented presents a very early version of the proposal of the
Unified Dashboard, in which SeaClouds is working (and whose objective is to present more
in detail for the next Deliverable, D4.5 Unified dashboard and revision of Cloud API). The
dashboard will be used to access to the platform services. It is designed to @\alear

and simple way to interact with SeaClouds in all stages of the lifecycle of an application,
starting from the application module definition (module profile) to the analysis of
FLILJX AOF A2y Qa {[! QOA2flGA2Yyad

In order to establish a common GUI agsothe whole SeaClouds platform, we need to
ALISOATEe (GKS FTNIYSE2N] GKFIG 6SQNXB 3F2Ay3 G2
dashboard. The organization of the Dashboard is divided into several sections which could
be found in Deliverable 4.2. In thigdage, it is possible to deploy and monitor the
applications deployed using Brooklyn as Deployer Backend.

2.5SLA Service

The SLA Service enables the Service Level Agreements (SLA) management of business
oriented policies. The SLA Service is an implementafitineoWWSAgreement specification.
In this section we will describe the status of the current implementation of the SLA Service

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

in SeaClouds.

In Deliverable D4.1 the architecture of the SLA Service was presented. The main
responsibilities of the SLA sewiare:

1 Generating and storing W&greement templates and agreements.

1 Assessing that all the agreements (SLA guarantees) are respected assessing the
business penalties.

Currently, for the first draft, the basic capabilities of Repository, SLA Manager and
Assessment components have been developed. This includes the storing and retrieval of
WSAgreement entities, with some search capabilities, and a preliminary assessment of
existing agreements. In terms of integration, Brooklyn is used as Monitoring Seovice t

accomplish the constraints evaluation.

3. Code description

This section describes the code implemented in the initial version of the SeaClouds software
platform, related mainly to the rutime environment, consisting on the deployer, monitor
and SLAcomponents. Also, implementations related to the dashboard have been
performed, although in an early stage; so the details about it were already described in
Deliverable D4.2. As regards the matchmaking process, as aforementioned, it will be
described in ext deliverables.

3.1 Deployer: Brooklyn Concepts

The central concept in a Brooklyn deployment is that of an entity. An entity represents a
resource under management, either base entities (individual machines or software
processes) or logical collections oé#e entities.

Fundamental to the processing model is the capability of entities to be the parent of other
entities (the mechanism by which collections are formed), with every entity having a single
parent entity, up to the privileged tofevel applicatiorentity.

Entities are code, so they can be extended, overridden, and modified. Entities can have
events, operations, and processing logic associated with them, and it is through this
mechanism that the active management is delivered.

The main responsibilés of an entity are:
1 Provisioning the entity in the given location or locations.
1 Holding configuration and state (attributes) for the entity.
1 Reporting monitoring data (sensors) about the status of the entity.
1 Exposing operations (effectors) that canpgmzformed on the entity.

1 Hosting management policies and tasks related to the entity.
3.1.1 Sensors and Effectors

Sensors (activity information and notifications) and effectors (operations that can be
invoked on the entity) are defined by entities as statiadgeih the Entity subclass.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

Sensors can be updated by the entity or associated tasks, and sensors from an entity can be
subscribed to by its parent or other entities to track changes in an entity's activity.

Effectors can be invoked by an entity's parennagely, and the invoker is able to track the
execution of that effector. Effectors can be invoked by other entities, but this functionality
has to be used sparingly to prevent too many managers.

An entity consists of a Java interface (used when interactiitly the entity) and a Java
class. For resilience, it is recommended to store that the entity's state in attributes is stored.
If internal fields can be used, then the data will be lost on Brooklyn restart upon Brooklyn
restarting, and may cause problenfsthe entity is to be moved to a different Brooklyn
management node.

3.1.2 Configuration

All entities contain a map of config information. This can contain arbitrary values, typically
keyed under static ConfigKey fields on the Entity-slalss. These values airgherited, so
setting a configuration value at the application level will make it available in all entities
underneath unless it is overridden.

Configuration is propagated when an application "goes live" (i.e. it becomes "managed"”,
either explicitly or wien its start() method is invoked), so config values must be set before
this occurs.

Documentation of the flags available for individual entities can normally be found in the
javadocs.

The @SetFromFlag annotations on ConfigKey static field definitiohe ientity's interface

is the recommended mechanism for displaying configuration options. Currently, the
camelCase notation is used to define the figikey Flagssuch as "appUrl", but we intend

to use the C notation, which is used by TOSCA and CAMPapp.rule".

3.2Deployer: PHP Support

In this section, we describe how have been developed the PHP support in the deployment
engine currently used by SeaClouds, Brooklyn.

3.2.1 Implementing an Entity

All entity implementations inherit from AbstractEntity, often tugh one of the following:
1 SoftwareProcess: if it is a software process
1 VanillaJavaApp: if it is a planitd-java app
1 JavaWebAppSoftwareProcess: if it is a DAged wekapp
1 WhirrEntity: if it is a service launched using Whirr
1 DynamicGroup: if it is eollection of other entities

Softwarebased processes tend to use drivers to install and launch the remote processes
onto locations which support that driver type.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

For example, AbstractSoftwareProcessSshDriver is a common driver superclass, targetting
SshiMachineLocation (a machine to which Brooklyn can ssh).

The various SoftwareProcess entities (as aboveand some of the exemplars listed at the end
of this page) have their own dedicated drivers.

Entities model the deployment elements which are used durimg dpplication livecycles.
The methods on the entity interface are its effectors; the interface also defines its sensors.
However, the entities need mechanisms to manage the real elements in the deployment
environment where they are being executed, thewvers. For example, an entity could
display an operation to restart a service.

Maybe, this entity does not know the mechanisms to carry out this operation, which could
depend on the runtime environment. In this regard, the entity uses a driver which knows
and contains the implementation necessary to execute the operations in the final runtime
environment, establish the sensor connections, etc. Typically, the implementation of the
drivers is based on Ssh technology which allows commands and programs tecogeexin

the final runtime, remotely and a standardized way.

Apache Web server (httpd) is modeled using an entity which displays some operations
(effectors) such as install, configure, etc. Although this entity contains the logic of several
operations, i does not maintain knowledge over the final system. So, the driver describes
the mechanisms necessary to interact with the real component. In this case, the server
httpd is installed in an AWShtfp://aws.amazoncom/ec?2/) virtual machine with Centos
(https://www.centos.orgl). The driver contains the Ssh commands to carry out the
operations, e.g. when the entity is installed it then uses the driver operation to send and run
the bash commands to install the httpd in the deployment environment selected, Centor
VM in this case. So, the server installation management is, encapsulated, wrapped, hidden
and centralized by the driver.

Entities are created through the management cornitéather than calling the constructor
directly). This returns a proxy for the entity rather than the real instance, which is important
in a distributed management plane.

Finally, there is a collection of traits, such as Resizable, in the package breoldyrrait.
These provide common sensors and effectors on entities, supplied as interfaces. Choose one
(or more) as appropriate.

3.2.2 Key Steps to Implement an Entity
1 Create your entity interface, extending the appropriate selection from above, to

define theeffectors and sensors.

1 Include an annotation like @ImplementedBy(YourEntitylmpl.class) on your interface,
where YourEntitylmpl will be the class name for your entity implementation.

1 Create your entity class, implementing your entity interface and extendiey
classes for your chosen entity suggpes. Naming convention is a suffix "Impl" for
the entity class.

1 Create a driver interface, again extending as appropriate (e.qg.
SoftwareProcessDriver). The naming convention is to have a suffix "Driver".

http://aws.amazon.com/ec2/
https://www.centos.org/

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

1 Create he driver class, implementing your driver interface, and again extending as
appropriate. The naming convention is to have a suffix "SshDriver" for dbassil
implementation. The correct driver implementation is found using this naming
convention, or vizustom namings provided by theBasicEntityDriverFactory.

1 Wire the public Class getDriverinterface() method in the entity implementation, to
specify your driver interface.

1 Provide the implementation of missing lifecycle methods in your driver class (details
below)

1 Connect the sensors from your entity (e.g. overriding connectSensors() of
SoftwareProcessimpl).. See the sensor feeds, such as HttpFeed and JmxFeed.

Any JVM language can be used to write an entity. However the use of pure Java is
encouraged for enties in the Brooklyn core.

3.2.3 PHP Entities

Currently, SeaClouds uses Brooklyn as a deployer, which is in charge of the distribution of
GKS LI AOFGA2yaQ O02YLRYySyla 20SNI RATFSNByY

In this regard, we intend to adegeral features to Brooklyn in order to adapt its capabilities

to the goals of SeaClouds. At the moment, Brooklyn supports Java applications only, but,
although Java is one of the most used languages, SeaClouds includes support for othe
languages, for exaple, PHPas one of its goals.

In this document, we describe the architecture to add for adding PHP support to Brooklyn.
We have based our development on the Brooklyn structure, as we have mentioned above,
to take of advantage of current Brooklymanagement mechanisms.

Figure3. Overview of the PHP integration class diagidescribes the class diagram used to
extend Brooklyn. We have created erabstraction level which contains several abstract
classes and interfaces, PhpWebApp*, to define the common behavior and features (sensors,
effectors, general methods, etc) of PHP Web Applications. These classes have to be
extended and implemented to adithe final PHP support to Brooklyn. In this case we have
described the Apache httpd for the PHP system support.

The abstraction level extends the generic classes of Brooklyn which allows several general
mechanisms to be reused. For example, SoftwarePro@ess SoftwareProcessDriver
represent, respectively, a generic process entity and its driver. So, the
PhpWebSoftwareProcess interface models a generic Php Web App. In order to follow the
baseline described in the preceding sections, we have also defineteaig®HP driver.

The Apache classes are based on the abstraction level and contain the effector and sensor
implementations, define a final deployment PHP system, and how it is to be managed. We
will explain these classes in the following sections.

Please note that at the moment, we have only added Apache for PHP support and if in the
case we add another system, e.g., JBo#p:(/[bossweb.jboss.org/modules/php.htm) we
will also base it othe abstraction level.

http://jbossweb.jboss.org/modules/php.html

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

<<interface=: <<interfaces= ccinterfaces>
WebAppService SoftwareProcess SoftwareProcessDriver
| | !
Z‘_\ ‘T\ <<Inteffaces> Abs trac!SaﬂwarercessDn’ver‘
<<interfaces> SoftwareProcessimpl | PhpWebAppDriver |
PhpWebAppService | ‘ |
| | |
w\l T T
<<inlerface=:
PhpWebAppSoftwareProcess PhpWebAppSshDriver |
. |

1
N[T

PhpWebAppSoftwareProcessimpl |

N

<<interface== ‘

Interface.
ApacheServer - - ‘

ApacheDriver

ApacheSshDriver ‘

ApacheServerimpl

Figure3. Overview of the PHP integration class diagram

3.2.4 Generic PHP classes (abstraction level)

In this section we present the aforementioned abstraction level class diadtgurés). We

have already stated that the abstraction level contains the generic logic necessary for
describing PHP web applications using several classes of Brooklyn to intdgratew
FSFEGdZNBa Ay (GKS . NR21feyQad o0SKI@A2NE GKS €0

These classes are only mentioned in brief and will not be explained in detail here (the
interested reader can see the official documentation to obtain more inforoma&bout this
classes [5]). Therefore, here we are going to review just the most important class of the
diagram.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

<<interfaces:= <<lnterfaces= <<interface== AbstractSoftware
WebAppService SoftwareProcess SoftwareProcessDriver T
| | |
[N Ay
<<interface==
PhpWebAppDriver
<<inlerface>> SoftwareProcessimpl |
PhpWebAppService

+APP_NAME: ConfigKey<String= |
+APP_START_FILE: ConfigKey<String= A
+APP_TARBALL URL: ConfigKey<String=
+APF_GIT_REPO_URL: ConfigkEy <Sfring=

+ getHtipPort(): Integer

+ getEnabeProtocols(): Set<String=

+ deployGitResource(String url,
Siring targetName): String

+ deployTarballResource(String url,

| Siring targetName): String

ﬁ\t\. + undeploy(String targetName): void
<<interface==
PhpWebAppSoftwareProcess

+ DEFLOYED_PHP_APFPS: AtiributeSensor<Set<String==
+ DEFPLOY: MethodEffector<void=
+ UNDEFPLOY: MethodEffector<void=

+ deployGitResource(String url, String targetName): void
+ deployTarballResource(String url, String targethame). voi PhpWebAppSshDriver
+ undeploy(Siring: targethName): void

+ inProtocolEnable(String protocol): boolean
+ install{): void
+ stop(): void
i postLaunch(): void
inferRoot(): String
getDeployDir(): String
PhpWebAppSoftwareProcessimpl # getDeploySubair(): String
+ deploy(String url): String
| + undeploy(String targetMame): void

+ getDriver(): PhpWebAppDriver

+ getEnlableProtocols(): Set<String=

connectSensors(): void

doStop(): void

+ deployinitialApplications(): void

+ deployGitResource(String url,
Siring targetName): void

+ deployTarballResource(String url,
Siring targetName): void

+ undeploy({Sirinng targetName): void

Figure4. Abstraction level class diagram
3.2.4.1 PHPWebAppService

This interface is the most abstract level of a PHP entity and only contains the ConfigKkeys
necessary to describe the application. They are used in the application declaration in the
YAML BluePrint to specify, for example, where the application deployméfaca is stored

FNRY RAFFSNBYy(d aSNWAOSa o03AdGz SGOXuxX GKS ai
extends WebApplinterface which indicates that an entity is an Application Web. In what
follows, we specify the ConfigKey:

1 APP_NAMEName of theapplication.
1 APP_START_Fildthe PHP application file start.
1 APP_GIT_REPO_URNbe git repository where the application is hosted.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

1 APP_TARBALL_URIhe source where the tarball resource is hosted.

Regarding database connection, a generic way to determiree donnection in a PHP
application is using a file which defines the params necessary to establish the connection
with the database target and the application logic is charge of establish the connection. To
add database connection support our initial prgad defines the next config keys for
allowing the connection configuration.

ConfigKey Description

DB_CONNECTION_FILE_CONFIG [File which contains the database connect
params.

DB_CONNECTION_CONFIG_PARAN Map to define the paramsof the database
connection and their values.

Table2. Database connection datbase

3.2.4.2 PHPWebAppSoftwareProcess

This interface extends the PHPWebAppService and SoftwareProcess indicating that it is a
PHPentity. SoftwareProcesdefines several generic Configkeys and Effectors for managing
a process software generstich as [6]

ConfigKey Description

START_TIMEOUT timeout allowed to init the software.
SUGGESTED_VERSION suggested stable version of the software
DOWNLOAD_URL URLfrom where to download the software.
INSTALL_DIR folder where to install the software modeled.

SUGGESTED _INSTALL_DIR | alternative installation folder.

RUN_DIR folder to run the software (which could be installed
not).etc

Table3. PhpWebAppSoftwareProcess ConfigKeys

In addition, PhpWebAppSoftwareProcess describes the effectors to deploy and undeploy
applications.

1 DEPLOY_GIT_RESOURGHEPLOY_TARBALL_RESOURA&NBWS an entity to be
deployed using the unvhere it is stored (a git repo or an tarball url) . The effector
returns the id of the deployed application.

1 UNDEPLQMt allows undeploying an entity which has already been deployed using
the id application.

 DEPLOYED_PHP_APP&ontains the deployed agf A OF G A2y Qa ARa (G2 |
managed. It is updated each time the deploy/undeploy effectors are executed.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

3.2.4.3 PHPWebAppSoftwareProcessimpl

PhpWebAppSoftwareProcessimpl is an abstract class that implements PhpWebAppSoftware
and extends SeoftwareProcesgin

This class implements the generic behavior of the entity, defines the stop and initialize
methods, it allows the entity enable port, etc, to be known and defines new management
methods (as connectSensors()). Please note, that the getter and setteodsetre deleted
from the UML class and theaming convention is a suffix "Impl" for the entity class. Below,
we present the definition methods:

1 getEnableProtocols(allows the enable protocols to be known, e.g. http (by
default) and https.

1 connectSensa(): it connects the generic sensor with the data source, so we can say
that it is a generic method because almost all sensors used feed off the final PHP
support system, e.g. Apache status server page, etc. Thus, this method has to be
used @Override (andsed) by the final class which specifies this abstract class.

1 doStop() it allows the system to be stopped. Again, it is a generic method and it
needs to be extended.

getDriver() it returns the driver used to manage this entity.

deploy(String url)/undepby(String targetName) we have mentioned that the
management mechanisms are contained in the driver, so these methods send the
deploy/undeploy request to the entity driver, which is described by the getDriver()
method. Moreover, these methods manage (upeltthe deployed application
sensor when an application is added or removed.

3.2.4.4 PhpWebAppDriver
The PhpWebAppDriver interface extends the generic Brooklyn Driver classes, in fact it

extends the SoftwareProcessDriver and the ProcessDriver.

Only. It defines saral methods that have to be implemented in a specific class. In this case,
the most important methods could be deploy and undeploy which are used by the entity to
manage these tasks.

3.2.4.5 PhpWebAppSshDriver
The PhpWebAppSshDriver implen®ithe aforementionednterface It determines several

methods that allow the management of the real PHP support system:

1 isProtocolEnalbe()discovers the protocols which could be used over the real system
as http and https.

1 install(): it allows the software needed to run thegplication to be installed and, in
this case, this method has to be @Override to install the deployment environment.
However, it contains the installation of the generic components necessary during the
lifecycle, in this case PHP and git clients.

1 stop(): obviously, it stops the execution environment. Again, it has to be @Override

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

in any given class.

1 postLaunch() once the PHP environment has been installed and configured this
method carries out the management task needed by Brooklyn, like, for instance,
connect the ROOT_URL sensor that contains the root path of a server (which are
generated bynferRoot() method).

1 getDeployDir()and getDeploySubdir() return the folders which install and run the
applications.

1 deploy_git_resourcedeploy_tarball_resourceand undeploy(} they contain logic to
deploy and undeploy an application in the final deployment environment. They
implement a generic methodology to carry out these tasks, but they could be
@Override in the specific class to define a new deployment methggolo

3.2.4.6 Apache Httpd Server

Apache httpd is the deployment environment selected to deploy and rBirBapplication.

As we have already mentioned, the classes used to model this component are based on the
abstraction level explained in the previous sectionloe the class diagram used to add
Apache supportdr Brooklyn is shown iRigure5. Please note, that the names of the classes
may be modified.

3.2.4.7 ApacheServer

ApacheServer interface extends the PhpSoftwareProcess to indicate that it is a PHP entity
and that wraps the final deployment environment to deploy and run PHP applications. It
determines the ConfigKey and the sensors of the Apache installation.

1 SUGGESTERERSIONsuggested stable version of the ApacheServer.
DEPLOYMENT_TIMEOUWHpresents the allowed timeout to deploy an application.
INSTALL_DiRolder where Apache is installed.

CONFIGURATION_DfBlder where the apache configuration files are stored.

AVAILABLE_SITES CONFIGURATION_FOdaD&Rhat contains the configuration
and application deployment and run folders where the applications are deployed.

1
il
1
1

1 DEPLOY_RUN_DIgeployment and execution application folder. It is given from
AVAILABLE_SITES COUNRAIION_FOLDER.

1 DEFAULT_GROiUdRfault by Apache, it is needed to run the applications deployed
in DEPLOY_RUN_DIR.

1 HTTP_PORMHttp port where Apache is listening
1 SERVER_STATWRL where the status of the server can be consulted

In order to allow the management of the PHP applications, we have added several sensor:

Sensor Description

TOTAL_ACCESSES Number of accesses.

seacLouDs

AGILITY AFTEI DEFLOYMENT

Modsaling Planning Controlling

D5.4.1- Initial version of sw platfor

TOTAL_KBYTES

Total traffic in KBytes.

CPU_LOAD

Percentage CPU load.

UP_TIME

Total up time (in seconds).

REQUEST_PER_SEC

Requests per second.

BYTES_PER_SEC

Bytes processed per second.

BYTES_PER_REQ

Bytes per request.

BUSY_WORKERS

Number of busy workers.

3.2.4.8 ApacheServerimpl

Table4. Apache sensors availables

ApacheServerimmlass implements the ApacheServer to indicate its PHP entity nature and
extends PhpWebAppSoftwarelmpl (segureb). It represents the Apache installation used

in the deployment environment.

It defines an enricher:

1 serviceUpEnricherto wrap the start up of the server. It provides the data needed

for the sensor isEnable.

In addition, it defines an HttpFeed to carry out the sensor pulling. This object will be used by
the methods in charge of the sensor initialization.

This class defines several getter and setter methods which are used by the generic classes
(PhpWebAppSoftwareProcessimpl and PhpWebAppSshDriver) to manage the entity.

1 connectSensor()it is responsibledr initializing the sensors. It uses the httpFeed to
pull the data source. Please note, that this method uses an @Override the super
method implemented in PhpWebAppSoftwareProcessimpl.

SeacLoubs D5.4.1- Initial version of sw platfor

Modeling Planning Controlling

<<Interface== <<interface=> AbstractSoﬂwareProaesster‘
PhpWebAppSoftwareProcess PhpWebAppDriver |
|]
K PhpWebAppSshDriver ‘
PhpWebAppSoftwareProcessimpl | |
I - |

- 8
| | w

<<nterface== <<lnterface=>
ApacheServer ApacheDriver

SUGGESTED_VERSION: ConfigKey=Siring=
DEPLOYMENT_TIMEOUT: ConfigKey<String=

INSTALL_DIR: Configkey<String=

CONFIGURATION_DIR: ConfigKey<Siring=
AVAILABLE_SITES_CONFIGURATION_FOLDER: ConfigKey<String=
DEPLOY_RUMN_DIR: Configkey<Siring=

DEFAULT_GROUP: ConfigKey<Siring=

HTTP_PORT: ConfigKey<5tring=

SERVER_STATUS: ConfigKey<String=

MONITOR_URL: ConfigKey<5String=

MONITOR_URL_UP: AttributeSensor<Boolean:=
TOTAL_ACCESSES: AtiributeSensor<Long=

TOTAL_KBYTE: AttributeSensor<Long=

CPU_LOAD: AttributeSensor<Double=

UP_TIME: Aftribute Sensor<Long=

REQUEST_PER_SEC: AfiributeSensor<Doubles

BYTES_PER_SEC: AttributeSensar<Long=

BYTES_PER_REQ: Attribute Sensor<Long=

BUSY_WORKERS: AtiributeSensor<integers ApacheSshDriver ‘

+ gelEntity(}): ApacheServerimpl

getPortMap(): Map<String. Integer=
getDeploySubDir(): String

+ install{): void

= + getRunDir(): String

+ customize(): void

+ launch(): void

ApacheServerimpl +isRunning(): boolean
- - i + deployGitResource(String url,
- serviceUpEnricher: Enricher String targetMame): void
- hitpFeed: HitpFeed + deployTarballResource(String url,

String targetName): void

+ getDriverinterface(): Class

+ getDriver(): ApacheDriver

+ getHitpPort(): Integer

+ getDefaultGroup(): String

+ getintallDir(): String

+ getConfigurationDir(): String

+ getDeployRunDir(): String

+ getAvailableSitesConfigurationFolder(): String
connectSensor(): void

+ getShortMame(): String

Figure5. Apache Web Server class diagram

3.2.4.9 ApacheDriver

ApacheDriver extends the ApacheDriver and the PhpWebAppSshDriver but it is an empty
interface, so it does not define any ConfigKey, sensor or method.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

3.2.4.10 ApacheSshDriver

The ApacheSshDriver class contains the management based on Ssh of the Apaehe Se
installed. Please note, that currently the management is supported for a linux based system
(Debian), in successive versions the operations will be deployed to support all deployment
environments. This class defines several methods to implement ate@@s their supers.

1 getEntity(y returns entity that represents the Apache Web Server, in this case
ApacheServe.

getPortMap() returns enable protocols and their listened ports.

getDeploySubDir() returns the folder path where the PHP application can be
deployed.

getRunDir() determines the folder where the server is installed.

install(): installs the server in the host. This method uses the super method which
installs the common software such as PHP and git.

1 customize() this method configures the Apachserver to allow Brooklyn to be
managed.

isRunning() returns true when Apache is running and false otherwise.

deploy_git_resource()and deploy_tarball_git() deploy an application from a git
repo or a tarball URL (these method have been aforementionedrbgf

Lightweight PHP supporBrooklyn supports a simpler and lightweight approach to support
entity that are not supported by Brooklyn catalog, yet: VanillaSoftwareProcess + YAML.

3.3 Monitor mechanisms

Here we describe the monitoring mechanisms availabBrooklyn that allows SeaClouds to
define new data retrieving mechanisms as well as policies that will act over Brooklyn sensors
triggering some minor reconfiguration on the managed systems.

3.3.1 Data feeds

The usual strategy when reading information and vatbanges on sensors is to perform a
periodic query or request over certain service or method. Different kinds of data feeds are
provided by Brooklyn and they implement the core functionality that reads the sensors from
the deployed modules, as shownHhigure6.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

AbstractFeed

HttpFeed JmxFeed SshFeed FunctionFeed ShellFeed

Figure6. Data feeds hierarchy
The existing feeds are structured according to fgure6:

1 Abstract Feed: It captures common fields and processes for sensor feeds. These
generally poll or subscribe to get sensor values for an entity. They make it easy to
poll over http, jmx, etc, and they providéhe basic lifecycle methods for
starting/stopping feeds.

HttpFeed: Provides a feed of attribute values, by polling over http.

1
1 JmxFeed: Provides a feed of attribute values, by polling or subscribing over jmx.
1 SshFeed: Provides a feed of attribute valugspablling over ssh.

1

FunctionFeed: Provides a feed of attribute values, by periodically invoking functions.

1 ShellFeed: Provides a feed of attribute values, by executing shell commands.
3.3.1.1 Userdefined sensors

Applicatiorlevel metrics can be defined in some rpaf the process of deploying an
application, creating a connection to the deployed sensor and retrieving the desired metrics.
We have developed these monitoring mechanisms for a deployer unit such as Brooklyn, in
which sensors can be defined on a YAMtuhoent.

We made use of Entitylnitializer interface to implement a dynamic way of defining sensors
that will retrieve information from a remote URI, typically from a monitoring service that
the user provided.

3.3.1.2 EntitylInitializer

Instances of Entitylnitializesupply logic which can be used to initialize entities. These can
be added to an EntitySpec programmatically, or declared as part of YAML recipes in a
brooklyn.initializers section. In the case of the latter, implementing classes should define a
no-arg corstructor or a Map constructor so that YAML parameters can be supplied.

LG aAyLiXe O2yiGlAya (GKS RSTAYAGAZ2Y TF2N GKS Y
EntityLocal and perform the needed adjustments.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

3.3.1.3 AddSensor
This class extends Entitylnitializee€$-igure?7) and sets the main common attributes and
methods on adding a new sensor to a given entity, such as:

1 name: Name which will identify the semrsto be created.

1 period: Periodic time of the poll requests

1 targetType: This attribute is necessary to convert the monitoring data into a certain
sensor type. Type needs to be specified with a full Java classname but many of the
most used types are simfied to be more convenient (String, Integer, Double, or
Ct2rdz Xuvo

EntityInitializer
Sensor<T>

+ apply(EntityLocal): void

implements

| implements
AddSensor<RT, T extends Sensor<RT>> ‘

+ SENSOR_NAME: ConfigKey<Siring=
+ SENSOR_PERIOD: Configkey<Duration=
+ SENSOR_TYPE: Configkey<String=

AttributeSensor<T> |

14

+ newsensor(): AttributeSensor<T=

/ N

extends extends

/ AN

HttpRequestSensor<T> SshCommandSensor<String

+JS0MN_PATH: Configkey<String= + SENSOR_COMMAMND: Configkey<String=
+ SENSOR_URI: Configkey=String=
+ apply(EntityLocal): void
+ apply(EntityLocal): void

Figure7. AddSensor class diagram

3.3.1.4 HttpRequestSensor
This class creates a HttpFeed that will periodically generate an HttpRequest to a given URI,
and dumping thisnformation into a new sensor.

One of the requirements of using this sensor is that the HttpResponse from the monitoring
URI needs to be a JSON document. JSON format makes it simpler to read more than one
sensors on each request. In this way, we makeafgsonpath [7], a library that gives full

path access to every attribute defined on a JSON document at any level.

To use this sensor initializer the following configuration keys need to be specified:
9 uri: monitoring service URI that will generate the BSfdcument with sensors data.

1 jsonPath: full path to the sensor value. (Examples on how to use this path notation

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

can be found athttp://goessner.net/articles/JsonPathy.

3.3.2 Polices

Policies perfornthe active management enabled by Brooklyn. They can subscribe to entity
sensors and be triggered by them or they can run periodically. Policies can add subscriptions
to sensors on any entity. Normally a policy will subscribe to its related entity, totite c
entities, and/or those entities which are members.

When a policy runs it can:

1 perform calculations,

1 look up other values,

1 invoke effectors (management policies) or,

1 cause the entity associated with the policy to emit sensor values (enricher policies).
Entities can have zero or more Policy instances attached to them. Policies are highly
reusable as their inputs, thresholds and targets are customizable.

3.3.2.1 Mangement Policies

Resizer Policy

Increases or decreases the size of a Resizable entity based om@yatg sensor
value, the current size of the entity, and customized high/low watermarks.

1 A Resizer policy can take any sensor as a metric, have its watermarks tuned live, and
target any resizable entitybe it an application server managing how manyanses
it handles, or a tier managing global capacity.

1 e.qg. if the average request per second across a cluster of Tomcat servers goes over
the high watermark, it will resize the cluster to bring the average back to within the
watermarks.

3.3.2.2 EnricherPolicies

Ddta: converts absolute sensor values into a delta.

1
1 Timeweighted Delta converts absolute sensor values into a delta/second.
1 Rolling Mean:converts the last N sensor values into a mean.

1

Rolling Timewindow Mean: converts the last N seconds of sensor valugs a
weighted mean.

1 Custom Aggregatingaggregates multiple sensor values (usually across a tier, esp. a
cluster) and performs a supplied aggregation method to them to return an aggregate
figure, e.g. sum, mean, median, etc.

3.4Dashboard code description

In this release we have presented a basic frontend using HTML5 and JavaScript libraries. In
addition, in this version we have not implementing the SeaClouds unified API yet (it is under

http://goessner.net/articles/JsonPath/

seacLouDs

AGILITS AFTEr DEPLOUMENT D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

implementation), instead, to ensure the correct functionality of thepldger connected
GAGK GKS a2yAili2NE 6S o0l &S 2dz2NJ AYyAGALFf RSaA3
needed information.

3.5SLA Service code description

The SLA Service is a W§eement compliant module. The Core component of the SLA
Service is a FHful web service developed in Java. It uses mysql as database. The code is not
yet publicly available at the time of the writing of the deliverable.

3.5.1 Repository

The repository entities are JPA entities that mimic the -AMg&eements entities, i.e.
templates and agreements. The repository also provides Data Access Objects (DAOSs) to
isolate the use of the entities from the underlying technology.

A first version of the class diagram is showFigure8.

Enforcemantloly
natled
e
asiExecited F—.
~_HateTime
= mstrichama
alug
E GuaranteaTerm |
Agreemant
Prowsder Eendceliame
Cansumer 1 sErAcESCope
uie kgreementid - “sariatiefpilame
pame [ExpiraticnDiate rusiomSenrdcelevel
Aatus 1 :
1 Vialathon
L
L
1F EeniceMams
L SppeniceSoope
Template Palic “ Inetrichame
- i
patetime
:u:l:. . —_— :;r?:ltea_. ill.l:
provigers gl pchualvalug
mporancs

Figure8. SLA Repository Architecture
The diagram shows the main entities in the specification and the way they are related:
9 A Provider offers a service: a software servigdware resources, etc.

1 The service is described by ServiceDescriptionTerms with a Domain Specific
Language. The ServiceDescriptionTerms are intended to define a service that has to
be provisioned. This sla module needs external provision.

1 The provided arvice is represented by a Template, and the Template can be used to
generate an Agreement.

1 An agreement is a "document” that associates a Service and a Consumer. When the
relation is in negotiatiorphase, it's called an AgreementOffer. Once the agreement
is accepted, it's called a Agreement.

1 A Template and an Agreement can describe some restrictions to be fulfilled by the

SeacLoubs D5.4.1- Initial version of sw platfor

Modeling Planning Controlling

Consumer or by the Provider. The restrictions must be defined in a Debpeaific
Language

1 A violation of any restriction generatesv/éolation.
3.5.2 Assessment

The assessment of existing agreements is a process periodically executed in a thread. This
process walks over the agreements and checks if the agreements needs to be enforced. If
S0, a task is created is pushed to a Thread Pooluioedo be executed at a later time. The
tasks are pulled from the pool, and then executed. The needed metrics are retrieved from
the source (in this draft implementation, from Brooklyn sensors), and the constraints are
evaluated. This QoB evaluation geates penalties that will be notified to the Application
Administrator. The sequence diagramAigure9 summarizes the process.

Agreement enforcement (periodic execution)

Worker Quaua Task AgeementEnforcemant MetrcsRetriawar AgreementEvaluator EnforcementSanvice

i new Task() i ! i
e ——— =]

1]]

| star)_ i i

i i

1 1

1

1
{m1..mn} = getMetrcs(jmetrickey1. metrickeyn}) |

{v1p1.wvnpn} = evaluate{mi)
savefvipl..wnpn)

1
1 1
i i wv=violations;p=panaltias|
1

| Workar ‘ Queus H Tazk H AgreementEnforcemant ‘ MetricsRetriever | EnforcemeantService

AgreementEvaluator

Figure9. Assessment Behaviour

3.5.3 SLA Manager
The SLA Manager is the module acting as a RESTful web service. The REST endpoints are
JAXRS annotated classes, being jersey theRBXmplementation.
There is a resource endpoint per each interesting entity:

1 Providers

1 Templates

1 Agreements

1 Enforcement jobs

1 Violations

Additionally, another endpoint is exposed to receive metrics in case of having Monitoring
Managers that push metrics to interested observers.

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

4. Installation and Configuration

In this section, we present the prequisites and the how to instal and configure the
corresponding pieces to execute the first prototype of the SeaClouds software platform.

4.1 Deployer and Monitor (and Dashboard)

Here we detail the steps required to instafd configure the deployment and monitoring of
a cloud application using the first version of the SeaClouds platform.

4.1.1 Brooklyn Installation

Currently, the Brooklyn version that contains the features described in this document is
stored in the following rpository (in the branch phpAppDBSupport):

https://github.com/kiuby88/incubatofbrooklyn

The repo can be cloned in any repository using git and the necessary url:

https://github.com/kiuby88/incubatorbrooklyn.qit

The following command can be used:

$ git clonehttps://github.com/kiuby88/incubatorbrooklyn.qgit

brooklyn$ will be the Brooklyn repository.

Before that Brooklyn will be compiled, it is necessary select the branch. So, you can use the
command:

brooklyn$ git branch phpAppDBSupport

Next, brooklyn could be compiled using mvn command:
brooklyn$ mvn cleamstall

If you find a test error or Rat error, you are able to use the next command to sky it:
brooklyn$ mvn clean instalDskipTest=trueDrat.ignoreErrors=true
To launch Brooklyn, let's setup some paths for easy commands.
$ cd brooklyn$

$ BROOKLYN_DIRgwd)"

$ export PATH=3$PATH:$BROOKLYN_DIR/bin/

A quick test drive by launching Brooklyn can be done using:

$ brooklyn launch

Brooklyn will output the address of the management interface:

1 INFO Starting brooklymveb-console on loopback interface because no security
config is set.

INFO Started Brooklyn consoletdtp://127.0.0.1:8081/

But before we really use Brooklyn, we need to setup some Locations.

https://github.com/kiuby88/incubator-brooklyn
https://github.com/kiuby88/incubator-brooklyn.git
https://github.com/kiuby88/incubator-brooklyn.git
http://127.0.0.1:8081/
http://127.0.0.1:8081/

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

1 Stop Brooklyn with ct+t.

4.1.2 Prerequisites
This section lists the general software prerequisites to install and run the components
belonging to the SeaClouds platform.

1 Java (JDK 1.6)

1 Apache Maven: (version Maven 3.x)

1 GIT
Now it is time to tell to the system, that where it caind Maven, Ant and Tomcat. To do
this, the environment variables (and PATHSs) will be set.

4.1.3 Brooklyn Configuration
It is necessary perform a configuration of Brooklyn. Brooklyn deploys applications to
Locations. Locations can be clouds, machines with fReai localhost (for testing).
Brooklyn loads Location configuration frembrooklyn/brooklyn.properties

First, create a.brooklyn folder in your home directory and download the template
brooklyn.propertiego that folder:

$ mkdir ~/.brooklyn
$ cd ~/.brooklyn

$ wget /use/guide/quickstart/brooklyn.properties

Next, open brooklyn.propertie a text editor and add your cloud credentials. If you would
rather test Brooklyn on localhost, folloivese instructiondo ensure that your Brooklyn can
access your machine.

Then,restart Brooklyn:
$ brooklyn launch

Next, you can downoload the SeaClouds Dashboard proposal, available in the SeaClouds
GitHub:

$ git clonehttps://github.com/SeaCloudsEU/derrdashboardgit

After downloading it, you only need to change the endpoint where the dashboard will
ASIFNDK FT2NJ .NR2(feyd ¢KAA aSddzl Aa AYyaaiRrsS

Please notice that if you run the dashboard from local filesystem (by double clicking

0 K

AYRSEOKGYE O &2dz 6AEhINAMEITR wBa 2 BNDB6 § K 8A NB & 3

from your browser. We encourage executing the Dashboard in a web server.

4.2SLA Service Installation

In this section, we describe the procedure to be performedngiall the SLA service of the
SeaClouds platform.

http://brooklyncentral.github.io/use/guide/quickstart/brooklyn.properties
http://brooklyncentral.github.io/use/guide/locations/
https://github.com/SeaCloudsEU/demo-dashboard.git

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

4.2.1 Requirements

The requirements to install a working copy of the Core component of the SLA Service are:
1 Oracle JDK >=1.6
1 Database to install the database schema for the service: Mysqgl>=5.0
 Maven >= 3.0
4.2.2 Crating the mysql database
From mysqgl command tool, create a database (with a user with sufficient privileges, as
root):
$ mysgkp -u root
mysql> CREATE DATABASE sla;
Create a user:
mysql> CREATE USER slauser@localhost IDENTIFIED BY '_sla_';

mysql> GRANTLA PRIVILEGES ON sla.* TO slauser@locathogtional WITH GRANT
OPTION;

From command prompt, create needed tables:

$ mvn test exec:javd slarepository/pom.xml

Another option to create the database is execute a sql file from the project root dinector
$ bin/restoreDatabase.sh

The names used here are the default values of the sla core. See "Configuration" and
"Running" sections to know how to change these values.

4.2.3 Configuration

A configuration.properties.sampliat is placed in the parent directory 8do be copied to
configuration.properties

Several parameters can be configured through this file.

1. db.* allows to configure the database username, password and name in case it has
been changed from the proposed one in the section "Creating the nuggbase”.
It can be selected if queries from hibernate must be shown or not. These parameters
can be overriden at deployment time through the use of environment variables (see
section Running),

2. log.* allows to configure the log files to be generated d@nel level of information,

enforcement.* several parameters from the enforcement can be customized,

4. service.basicsecurity.* basic security is enabled These parameters can be used to set

the user name and password to access to the rest services.

w

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

4.2.4 Compilation

To compile the package:

$ mvn install

If you want to skip tests:

$ mvn installDmaven.test.skip=true

The result of the command is a war packagsl@service/targetdirectory.
4.2.5 Running

Now, you can deploy the war to an application server. If you are uBbmgcat, you must

copy the war to $TOMCAT/webapps.

Alternatively, you can run an embedded tomcat:

$ bin/runserver.sh

that is just a shortcut for:

$ mvn tomcat:runf slaservice/pom.xml

Some configuration parameters can be overridden using environmeriablas or jdk
variables. The list of overridable parameters is:

DB_DRIVER,; default value is com.mysql.jdbc.Driver

DB_URL,; default value is jdbc:mysql://${db.host}:${db.port}/${db.name}
DB_USERNAME; default value is ${db.username}

DB_PASSWORD,; default vakig{db.password}

DB_SHOWSQL,; default value is ${db.showSQL}

For example, to use a different database configuration:

$ export DB_URL=http://localhost:8080/sla

$ export DB_USERNAME-=sla

$ export DB_ PASSWORD=<secret>

$ bin/runserver.sh

4.2.6 Testing

Check thaeverything is working:

$ curlhttp://localhost:8080/slaservice/providers

The actual address depends on the application server configuration. The embedded tomcat
useshttp://localhost:8080/slaservice/as service root url.

4.3Demo Execution

Next, we show the CAMP YAML blue print, which we have generated and used to deploy the

http://localhost:8080/sla-service/providers
http://localhost:8080/sla-service/

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

Nuro early application:

name: PHP NuroCaseStu dy
services:
- serviceType: brooklyn.entity.webapp.apache.ApacheServer
name: Apache Server
id: apache
location: localhost
brooklyn.config:
http_port: 80
app_git_repo_url: <NURO_CASE_STUDY_GIT_REPO>
db_connection_file_config: config/config.php
db_connection_config_params:
g_DatabaseHost: $brooklyn:formatString("%s", component("db").attributeWhenReady("
host.address"))
g_DatabasePort: $brooklyn:component("db").attributeWhenReady("mysq|.port")
g_DatabasePassword: $ brooklyn:component("db").attributeWhenReady("mysql.password")
g_DatabaseUser: root
brooklyn.initializers:
- type: brooklyn.entity.software.http.HttpRequestSensor
brooklyn.config:
name: nuro.analytics_time
#uri: $brooklyn:formatString("% s/sensor.php”,component("apache")
.attributeWhenReady("host.address"))
uri: http://<%brooklyn - machine- IP%>/nurocasestudyphp5 - 5/sensor.php
jsonPath: $.databasel.analytics_time
targetType: double

- serviceType: brooklyn.en tity.database.mysql.MySqINode
id: db
name: MySQL Node
location: localhost
brooklyn.config:
datastore.creation.script.url: <NURO_CASE_STUDY_SQL>

I Notes

Currently, the HTTP sensor neesdefine the IP where the applicatiogontaining the
sensor willbe deployed For example if the applicationhas to bedeployed in localhost,
<%brooklyamachinelP%>will be substituted byocalhost or 127.0.0.1.

Since the code of the Nuro Case is confidential, currentlge values of
<NURO_CASE_STUDY_GIT_REPG:N&aD_CASE_STUDY_Sfelated to the Git repo
and the Database respectivelyan be 6éund in the Deliverable 6.3.1][8

In order to illustrate how the deployment and monitoring of the Nuro early Case Study, a
video have been recorded:

https://drive.google.com/file/d/0BWIKJIPN8k2glaXICVGxZSmw0OdUk/edit?usp=sharing

https://drive.google.com/file/d/0Bw9KJPN8k2glaXlCVGxZSmw0dUk/edit?usp=sharing

SeacLoubs D5.4.1- Initial version of sw platfor

Modsaling Planning Controlling

5. Conclusion

This deliverable accompanies the first prototype of theaClouds platfornThe software
prototype can be downloaded fromttps://github.com/SeaCloudsEU/SeaCloudsPlatform

Along the document, we have described the main services and functionalities currently
implementd in the initial version of the software platform, containing mainly the deployer,
monitoring, and SLA components, related to the-time environment of SeaClouds.

As regards the desigiime part, some research efforts are being performed proposing the
algorithms needed to the discovery process and the planner component, including the
matchmaking and the optimizer processes. In particular, currently, a simple matchmaking
mechanism have been implemented, although at the moment of writing this document
sone efforts are required to detail the implementation of this mechanism, so we decided to
detalil it in the next deliverable related to the integration of components in the software
platform.

https://github.com/SeaCloudsEU/SeaCloudsPlatform

