

{Ŝŀ/ƭƻǳŘǎ tǊƻƧŜŎǘ

5рΦпΦм Lƴƛǘƛŀƭ ǾŜǊǎƛƻƴ ƻŦ ǎǿ ǇƭŀǘŦƻǊƳ

Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based

applications

Call identifier FP7-ICT-2012-10

Grant agreement no. 610531

Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP5 Integration, infrastructure delivery and GUI
Deliverable code D5.4.1
Deliverable Title Initial version of sw platform
Nature Prototype
Dissemination Level Public
Due Date: M12
Submission Date: 10th October 2014
Version: 1.0
Status Final
Author(s): Miguel Barrientos (UMA), Jose Carrasco (UMA), Javier Cubo

(UMA), Francesco D'Andria (ATOS), Adrián Nieto (UMA),
Román Sosa (ATOS)

Reviewer(s) CǊŀƴŎŜǎŎƻ 5Ω!ƴŘǊƛŀ ό!¢h{ύ

2 D5.4.1 - Initial version of sw platform

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

3 D5.4.1 - Initial version of sw platform

Table of Contents

Table of Contents .. 3

Executive Summary ... 7

1. Introduction ... 8

1.1 List of Acronyms .. 8

2. Services and functionalities.. 9

2.1 Discoverer and Planner ... 10

2.2 Deployer .. 11

2.3 Monitor ... 12

2.4 Dashboard ... 12

2.5 SLA Service .. 12

3. Code description .. 13

3.1 Deployer: Brooklyn Concepts .. 13

3.1.1 Sensors and Effectors .. 13

3.1.2 Configuration ... 14

3.2 Deployer: PHP Support ... 14

3.2.1 Implementing an Entity ... 14

3.2.2 Key Steps to Implement an Entity ... 15

3.2.3 PHP Entities .. 16

3.2.4 Generic PHP classes (abstraction level) ... 17

3.3 Monitor mechanisms ... 24

3.3.1 Data feeds .. 24

3.3.2 Polices .. 27

3.4 Dashboard code description .. 27

3.5 SLA Service code description ... 28

3.5.1 Repository .. 28

3.5.2 Assessment .. 29

3.5.3 SLA Manager .. 29

4. Installation and Configuration ... 30

4.1 Deployer and Monitor (and Dashboard) ... 30

4.1.1 Brooklyn Installation .. 30

4.1.2 Pre-requisites ... 31

4 D5.4.1 - Initial version of sw platform

4.1.3 Brooklyn Configuration .. 31

4.2 SLA Service Installation ... 31

4.2.1 Requirements .. 32

4.2.2 Creating the mysql database ... 32

4.2.3 Configuration ... 32

4.2.4 Compilation ... 33

4.2.5 Running .. 33

4.2.6 Testing ... 33

4.3 Demo Execution .. 33

5. Conclusion .. 35

6. References .. 36

5 D5.4.1 - Initial version of sw platform

List of Figures

FIGURE 1: SEACLOUDS COMPONENTS/TOOLS TO BE DEVELOPED ... 9

FIGURE 2: SEACLOUDS COMPONENTS/TOOLS AVAILABLE AT M12 .. 10

FIGURE 3. OVERVIEW OF THE PHP INTEGRATION CLASS DIAGRAM 17

FIGURE 4. ABSTRACTION LEVEL CLASS DIAGRAM ... 18

FIGURE 5. APACHE WEB SERVER CLASS DIAGRAM .. 23

FIGURE 6. DATA FEEDS HIERARCHY ... 25

FIGURE 7. ADDSENSOR CLASS DIAGRAM... 26

FIGURE 8. SLA REPOSITORY ARCHITECTURE .. 28

FIGURE 9. ASSESSMENT BEHAVIOUR ... 29

6 D5.4.1 - Initial version of sw platform

List of Tables

TABLE 1. ACRONYMS .. 8

TABLE 2. DATABASE CONNECTION DATBASE .. 19

TABLE 3. PHPWEBAPPSOFTWAREPROCESS CONFIGKEYS ... 19

TABLE 4. APACHE SENSORS AVAILABLES ... 22

7 D5.4.1 - Initial version of sw platform

Executive Summary

The objective of this deliverable is to give an overview of the first SeaClouds integrated
prototype as outcome of the implementation work done in the technical work packages
WP3 and WP4, where the main activities so far are concentrated in Deliverables D3.1, D4.1
and D4.2.

The document overviews the tools implemented by M12 and describe all the necessary
process to install and configure the system.

8 D5.4.1 - Initial version of sw platform

1. Introduction

The deliverable D5.4.1 is the first deliverable of D5.4.X saga. It overviews the SeaClouds
software tools which have been implemented during the course of the first twelve months.

We have tried to keep the deliverable short, in order not to repeat any information already
available from previous deliverables. These deliverables have been referenced where
appropriate. Anyway, some important aspects related to the implementations are implicitly
described in this document.

The structure of the document is as follows.

First, in Section 3, we provide a list of services/functionalities implemented at M12 and brief
descriptions of them. Section 4 describes how the code is organized, and Section 5 explains
how to configure and install, as well as how to use the prototype. Last, Section 5 concludes
the deliverable.

1.1 List of Acronyms

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

TOSCA Topology and Orchestration Specification for Cloud Applications

CAMP Cloud Application Management for Platforms

GUI Graphical User Interface

API Application Programming Interface

APP Application

DB Database

WP Work Package

DAM Deployable Application Model

YAML YAML Ain't Another Markup Language
Table 1. Acronyms

9 D5.4.1 - Initial version of sw platform

2. Services and functionalities

Currently, several SeaClouds goals are accomplished. In Figure 1 we present the services and
components, as well as the interaction among the components of the SeaClouds platform
which should be implemented at the end of the project life-cycle.

 Figure 1: SeaClouds components/tools to be developed

The Figure 1 represents the steps necessary to carry out an application deployment from
the initial stage where the Application Developer (end-user) provides the Application Model
consisting of the Module Profile and the Topology representing the connections among the
modules of the cloud application to be deployed (other elements as the SLA restrictions and
policies are considered by SeaClouds), as is described in detail in Deliverable D3.1 [1] related
to the design-time. After the Abstract Application Model has been specified, SeaClouds
starts the Discoverer and Planner process (note that the Discoverer is included into the
Planner service in the figure). It consists of two processes: Matchmaking and Optimizer, also
explained in Deliverable D3.1 [1].

Then, as result of the Planner, a Deployable Application Model (DAM), which specifies the
cloud services used to distribute the application, is generated by the Planner. The DAM
generated allows the deploymeƴǘ ƻŦ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ƳƻŘǳƭŜ ƻǾŜǊ ƘŜǘŜǊƻƎŜƴŜƻǳǎ Lŀŀ{ ŀƴŘ
PaaS, using the Deployer component, more detailed in Deliverable D4.1 [2]. Once the
application are deployed and managed by the Deployer, this notifies to the Monitor for
initializing the monitoring of the applications, which connects with the SLA service to
manage the violations of the QoS and QoB, and properties.

A GUI as Dashboard is also used for the interaction with the Application Administrator. Note
that a Persistent Layer should be considered to maintain a continue store (e.g., the QoS

10 D5.4.1 - Initial version of sw platform

violations).

Since the SeaClouds project is in its first year, in Figure 2, only the SeaClouds functionalities
implemented in this first iteration of the project, month M12, are depicted (green sticks),
marking the functionalities not considered for the review demo (red cross) and those which
are under implementation (TODO).

Along this document we will explain the different components implemented for this initial
version of the software platform of SeaClouds. We refer to the technical documents, D3.1,
D4.1 and D4.2 (for the API) [3] to know more about every component or service. In fact, the
services or functionalities not implemented yet or under implementation has not been
included in this document.

For example, the Matchmaking process is a work in progress, and we pretend to present a
simple matchmaking in the demo review (depending on the results on some issues we are
analyzing as regards the algorithms we are implementing), although some implementation
details have to be concreted, so we have decided to include the description of the
Matchmaking in the next deliverable, and here only in the next section a brief section will be
dedicated to the Discoverer and the Planner.

 Figure 2: SeaClouds components/tools available at M12

2.1 Discoverer and Planner

In the Deliverable D3.1, we have already presented the functionality of these two
components, thus here we only mention the main functionalities of both.

Together with the description of the user input (the Application Model), the Planner

11 D5.4.1 - Initial version of sw platform

component needs to know which are the possible services available from cloud providers.
Multiple cloud resources can be offered by cloud providers at different levels of abstraction.
This is the main taks of the Discoverer.

On the other hand, the Planner component is in charge of providing an Abstract
Deployment Plan (ADP) that defines where each application module will be deployed (and
used to generate the final Deployable Plan, see next section).

Given a set of modules with their requirements, the topology of the application and a set of
cloud resources, the Planner will generate an ADP that meet the requirements specified by
the user. The ADP includes the concrete services associated with each Base module and the
policies to manage the scaling mechanism of each module.

The generation of the ADP can be performed in two steps (see Deliverable D3.1 for more
details): 1) Matchmaking: this first step aims to identify the cloud resources that are suitable
to allocate each module, and 2) Optimization: once a set of suitable cloud services have
been identified for each modules, an optimization process can be performed.

2.2 Deployer

In the previous Deliverable D4.1, we introduced the Deployer as the SeaClouds component
responsible for the application module distribution across selected cloud providers. In this
section, we describe the current status of the multideployment description and the support
technologies, following the figure that represents the initial architecture of the deployer,
proposed in the Deliverable D4.1.

In the architecture it is depicted how the deployer is composed by several elements. The
main element of our SeaClouds Deployer is the Deployer Engine. The Deployer Engine
receives a Deployable Application Plan through its Deployer API and executes the DAM. As
the Deployer Engine is cloud-agnostic it is able to deploy applications to the different cloud
provider services using multiple Cloud Adapters. Once the application has been deployed,
the Deployer Engine uploads the live model which contains the data structure (components
and relationship between these) in order to maintain topology of the application.

Currently, for the first draft we use Brooklyn as Deployer Engine to accomplish the
multideployment of the applications component and the Live Model generation and
management. The applications components could be deployed over different cloud
providers simultaneously (using jClouds [4] like Cloud Adapters). Therefore, the application
topology status is stored in the Live Model using several XML files. Although, these files are
stored over the local file system, they could be deployed over a BlobStore (or PaaS Store
service) of the any cloud provider supported by the Cloud Adapters. In any case, the
Deployer Engine is charge of modify the Live Model to maintain the integrity with the live
real distribution status.

Regarding the supported technologies, PHP application support has been added to Brooklyn
in order to allow the deployment, management and monitoring of our early case study,
Nuro Application which was developed using PHP (Section 5 of the Deliverable 4.1).

When we add PHP support to Brooklyn, we are adding PHP application description to the
Deployable Application Model automatically, so currently this technology could be used
from the DAM.

12 D5.4.1 - Initial version of sw platform

2.3 Monitor

In this section we will describe the status of the current implementation regarding the
Monitor component in SeaClouds. Monitor component is in charge of retrieving the
monitoring data from deployed applications, making it available to the rest of the
components in SeaClouds. Also, it is responsible for the control and enforcement of QoS
properties and SLA, as well as forwarding violations on these properties to the interested
subscribed modules. The retrieved data and related information must be completely
available through the Monitor API.

Following the monitor architecture introduced in the Deliverable 4.1, the Monitor
functionality is centralized on the Monitoring Manager, which acts as a registry for new
ŀǇǇƭƛŎŀǘƛƻƴǎ ŘŜǇƭƻȅŜŘ ŀƴŘ ƛǘΩǎ ŀƭǎƻ ǘƘŜ ƳŜŎƘŀƴƛǎƳ ǘƻ ƳŀƴŀƎŜ ǘƘŜ Řŀǘŀ ƎŜƴŜǊŀǘŜŘ ŦǊƻƳ ǘƘŜ
Monitoring agents by retrieving it, exposing it through the Monitor API and storing it for
later usage and analysis.

Regarding the Monitoring Agents, and as an initial approach, we make use of Brooklyn as
the main Monitoring Agent, making use of the management capabilities and mechanisms
incorporated in this tool, such as sensors, data feeds, enrichers and policies. These allows us
to define new data retrieving mechanisms for any application managed by SeaClouds that
will be gathered as QoS properties on the Monitor platform. An overall view of the kind of
metrics retrieved by Brooklyn can be found in the Annex C of Deliverable 4.1. These metrics
cover different kind of application and infrastructure monitoring giving a general description
of the managed cloud system.

In the following releases of the Monitor component, several other Monitoring Agents will be
included, making use of the abstraction layer that these Agents propose in order to retrieve
a wider family of metrics from the rest of the levels of the application.

2.4 Dashboard

The current functionality implemented presents a very early version of the proposal of the
Unified Dashboard, in which SeaClouds is working (and whose objective is to present more
in detail for the next Deliverable, D4.5 Unified dashboard and revision of Cloud API). The
dashboard will be used to access to the platform services. It is designed to provide a clear
and simple way to interact with SeaClouds in all stages of the lifecycle of an application,
starting from the application module definition (module profile) to the analysis of
ŀǇǇƭƛŎŀǘƛƻƴΩǎ {[! ǾƛƻƭŀǘƛƻƴǎΦ

In order to establish a common GUI across the whole SeaClouds platform, we need to
ǎǇŜŎƛŦȅ ǘƘŜ ŦǊŀƳŜǿƻǊƪ ǘƘŀǘ ǿŜΩǊŜ ƎƻƛƴƎ ǘƻ ǳǎŜ ŘǳǊƛƴƎ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ǇǊƻŎŜǎǎ ƻŦ ǘƘŜ
dashboard. The organization of the Dashboard is divided into several sections which could
be found in Deliverable 4.2. In this stage, it is possible to deploy and monitor the
applications deployed using Brooklyn as Deployer Backend.

2.5 SLA Service

The SLA Service enables the Service Level Agreements (SLA) management of business
oriented policies. The SLA Service is an implementation of the WS-Agreement specification.
In this section we will describe the status of the current implementation of the SLA Service

13 D5.4.1 - Initial version of sw platform

in SeaClouds.

In Deliverable D4.1 the architecture of the SLA Service was presented. The main
responsibilities of the SLA service are:

¶ Generating and storing WS-Agreement templates and agreements.

¶ Assessing that all the agreements (SLA guarantees) are respected assessing the
business penalties.

Currently, for the first draft, the basic capabilities of Repository, SLA Manager and
Assessment components have been developed. This includes the storing and retrieval of
WS-Agreement entities, with some search capabilities, and a preliminary assessment of
existing agreements. In terms of integration, Brooklyn is used as Monitoring Service to
accomplish the constraints evaluation.

3. Code description

This section describes the code implemented in the initial version of the SeaClouds software
platform, related mainly to the run-time environment, consisting on the deployer, monitor
and SLA components. Also, implementations related to the dashboard have been
performed, although in an early stage; so the details about it were already described in
Deliverable D4.2. As regards the matchmaking process, as aforementioned, it will be
described in next deliverables.

3.1 Deployer: Brooklyn Concepts

The central concept in a Brooklyn deployment is that of an entity. An entity represents a
resource under management, either base entities (individual machines or software
processes) or logical collections of these entities.

Fundamental to the processing model is the capability of entities to be the parent of other
entities (the mechanism by which collections are formed), with every entity having a single
parent entity, up to the privileged top-level application entity.

Entities are code, so they can be extended, overridden, and modified. Entities can have
events, operations, and processing logic associated with them, and it is through this
mechanism that the active management is delivered.

The main responsibilities of an entity are:

¶ Provisioning the entity in the given location or locations.

¶ Holding configuration and state (attributes) for the entity.

¶ Reporting monitoring data (sensors) about the status of the entity.

¶ Exposing operations (effectors) that can be performed on the entity.

¶ Hosting management policies and tasks related to the entity.

3.1.1 Sensors and Effectors

Sensors (activity information and notifications) and effectors (operations that can be
invoked on the entity) are defined by entities as static fields in the Entity subclass.

14 D5.4.1 - Initial version of sw platform

Sensors can be updated by the entity or associated tasks, and sensors from an entity can be
subscribed to by its parent or other entities to track changes in an entity's activity.

Effectors can be invoked by an entity's parent remotely, and the invoker is able to track the
execution of that effector. Effectors can be invoked by other entities, but this functionality
has to be used sparingly to prevent too many managers.

An entity consists of a Java interface (used when interacting with the entity) and a Java
class. For resilience, it is recommended to store that the entity's state in attributes is stored.
If internal fields can be used, then the data will be lost on Brooklyn restart upon Brooklyn
restarting, and may cause problems if the entity is to be moved to a different Brooklyn
management node.

3.1.2 Configuration

All entities contain a map of config information. This can contain arbitrary values, typically
keyed under static ConfigKey fields on the Entity sub-class. These values are inherited, so
setting a configuration value at the application level will make it available in all entities
underneath unless it is overridden.

Configuration is propagated when an application "goes live" (i.e. it becomes "managed",
either explicitly or when its start() method is invoked), so config values must be set before
this occurs.

Documentation of the flags available for individual entities can normally be found in the
javadocs.

The @SetFromFlag annotations on ConfigKey static field definitions in the entity's interface
is the recommended mechanism for displaying configuration options. Currently, the
camelCase notation is used to define the ConfigKey Flags, such as "appUrl", but we intend
to use the C notation, which is used by TOSCA and CAMP, e.g.: "app_rule".

3.2 Deployer: PHP Support

In this section, we describe how have been developed the PHP support in the deployment
engine currently used by SeaClouds, Brooklyn.

3.2.1 Implementing an Entity

All entity implementations inherit from AbstractEntity, often through one of the following:

¶ SoftwareProcess: if it is a software process

¶ VanillaJavaApp: if it is a plain-old-java app

¶ JavaWebAppSoftwareProcess: if it is a JVM-based web-app

¶ WhirrEntity: if it is a service launched using Whirr

¶ DynamicGroup: if it is a collection of other entities

Software-based processes tend to use drivers to install and launch the remote processes
onto locations which support that driver type.

15 D5.4.1 - Initial version of sw platform

For example, AbstractSoftwareProcessSshDriver is a common driver superclass, targetting
SshMachineLocation (a machine to which Brooklyn can ssh).

The various SoftwareProcess entities (as aboveand some of the exemplars listed at the end
of this page) have their own dedicated drivers.

Entities model the deployment elements which are used during the application livecycles.
The methods on the entity interface are its effectors; the interface also defines its sensors.
However, the entities need mechanisms to manage the real elements in the deployment
environment where they are being executed, the drivers. For example, an entity could
display an operation to restart a service.

Maybe, this entity does not know the mechanisms to carry out this operation, which could
depend on the runtime environment. In this regard, the entity uses a driver which knows
and contains the implementation necessary to execute the operations in the final runtime
environment, establish the sensor connections, etc. Typically, the implementation of the
drivers is based on Ssh technology which allows commands and programs to be executed in
the final runtime, remotely and a standardized way.

Apache Web server (httpd) is modeled using an entity which displays some operations
(effectors) such as install, configure, etc. Although this entity contains the logic of several
operations, it does not maintain knowledge over the final system. So, the driver describes
the mechanisms necessary to interact with the real component. In this case, the server
httpd is installed in an AWS (http://aws.amazon.com/ec2/) virtual machine with Centos
(https://www.centos.org/). The driver contains the Ssh commands to carry out the
operations, e.g. when the entity is installed it then uses the driver operation to send and run
the bash commands to install the httpd in the deployment environment selected, Centor
VM in this case. So, the server installation management is, encapsulated, wrapped, hidden
and centralized by the driver.

Entities are created through the management context (rather than calling the constructor
directly). This returns a proxy for the entity rather than the real instance, which is important
in a distributed management plane.

Finally, there is a collection of traits, such as Resizable, in the package brooklyn.entity.trait.
These provide common sensors and effectors on entities, supplied as interfaces. Choose one
(or more) as appropriate.

3.2.2 Key Steps to Implement an Entity

¶ Create your entity interface, extending the appropriate selection from above, to
define the effectors and sensors.

¶ Include an annotation like @ImplementedBy(YourEntityImpl.class) on your interface,
where YourEntityImpl will be the class name for your entity implementation.

¶ Create your entity class, implementing your entity interface and extending the
classes for your chosen entity super-types. Naming convention is a suffix "Impl" for
the entity class.

¶ Create a driver interface, again extending as appropriate (e.g.
SoftwareProcessDriver). The naming convention is to have a suffix "Driver".

http://aws.amazon.com/ec2/
https://www.centos.org/

16 D5.4.1 - Initial version of sw platform

¶ Create the driver class, implementing your driver interface, and again extending as
appropriate. The naming convention is to have a suffix "SshDriver" for an ssh-based
implementation. The correct driver implementation is found using this naming
convention, or via custom namings provided by theBasicEntityDriverFactory.

¶ Wire the public Class getDriverInterface() method in the entity implementation, to
specify your driver interface.

¶ Provide the implementation of missing lifecycle methods in your driver class (details
below)

¶ Connect the sensors from your entity (e.g. overriding connectSensors() of
SoftwareProcessImpl).. See the sensor feeds, such as HttpFeed and JmxFeed.

Any JVM language can be used to write an entity. However the use of pure Java is
encouraged for entities in the Brooklyn core.

3.2.3 PHP Entities

Currently, SeaClouds uses Brooklyn as a deployer, which is in charge of the distribution of
ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴǎΩ ŎƻƳǇƻƴŜƴǘǎ ƻǾŜǊ ŘƛŦŦŜǊŜƴǘ ƭƻŎŀǘƛƻƴǎ όŎƭƻǳŘǎΣ ƭƻŎŀƭ ƻǊ ǊŜƳƻǘŜ ±aΣ ŜǘŎύΦ

In this regard, we intend to add several features to Brooklyn in order to adapt its capabilities
to the goals of SeaClouds. At the moment, Brooklyn supports Java applications only, but,
although Java is one of the most used languages, SeaClouds includes support for other
languages, for example, PHP, as one of its goals.

In this document, we describe the architecture to add for adding PHP support to Brooklyn.
We have based our development on the Brooklyn structure, as we have mentioned above,
to take of advantage of current Brooklyn management mechanisms.

Figure 3. Overview of the PHP integration class diagram describes the class diagram used to
extend Brooklyn. We have created one abstraction level which contains several abstract
classes and interfaces, PhpWebApp*, to define the common behavior and features (sensors,
effectors, general methods, etc) of PHP Web Applications. These classes have to be
extended and implemented to add the final PHP support to Brooklyn. In this case we have
described the Apache httpd for the PHP system support.

The abstraction level extends the generic classes of Brooklyn which allows several general
mechanisms to be reused. For example, SoftwareProcess and SoftwareProcessDriver
represent, respectively, a generic process entity and its driver. So, the
PhpWebSoftwareProcess interface models a generic Php Web App. In order to follow the
baseline described in the preceding sections, we have also defined a generic PHP driver.

The Apache classes are based on the abstraction level and contain the effector and sensor
implementations, define a final deployment PHP system, and how it is to be managed. We
will explain these classes in the following sections.

Please note that at the moment, we have only added Apache for PHP support and if in the
case we add another system, e.g., JBoss (http://jbossweb.jboss.org/modules/php.html), we
will also base it on the abstraction level.

http://jbossweb.jboss.org/modules/php.html

17 D5.4.1 - Initial version of sw platform

Figure 3. Overview of the PHP integration class diagram

3.2.4 Generic PHP classes (abstraction level)

In this section we present the aforementioned abstraction level class diagram (Figure 4). We
have already stated that the abstraction level contains the generic logic necessary for
describing PHP web applications using several classes of Brooklyn to integrate the new
ŦŜŀǘǳǊŜǎ ƛƴ ǘƘŜ .ǊƻƻƪƭȅƴΩǎ ōŜƘŀǾƛƻǊΣ ǘƘŜ ƭŀǘŜǎǘ ŀǊŜ ǎƘƻǿƴ ǿƛǘƘ ŀ ƎǊŜŜƴ ōŀŎƪƎǊƻǳƴŘΦ

These classes are only mentioned in brief and will not be explained in detail here (the
interested reader can see the official documentation to obtain more information about this
classes [5]). Therefore, here we are going to review just the most important class of the
diagram.

18 D5.4.1 - Initial version of sw platform

Figure 4. Abstraction level class diagram

3.2.4.1 PHPWebAppService

This interface is the most abstract level of a PHP entity and only contains the ConfigKeys
necessary to describe the application. They are used in the application declaration in the
YAML BluePrint to specify, for example, where the application deployment artifact is stored
ŦǊƻƳ ŘƛŦŦŜǊŜƴǘ ǎŜǊǾƛŎŜǎ όƎƛǘΣ ŜǘŎΧύΣ ǘƘŜ ǎǘŀǊǘ ŦƛƭŜ ŀǇǇƭƛŎŀǘƛƻƴΣ ŜǘŎΦ aƻǊŜƻǾŜǊΣ ǘƘƛǎ ƛƴǘŜǊŦŀŎŜ
extends WebAppInterface which indicates that an entity is an Application Web. In what
follows, we specify the ConfigKey:

¶ APP_NAME: Name of the application.

¶ APP_START_FILE: The PHP application file start.

¶ APP_GIT_REPO_URL: The git repository where the application is hosted.

19 D5.4.1 - Initial version of sw platform

¶ APP_TARBALL_URL: The source where the tarball resource is hosted.

Regarding database connection, a generic way to determine the connection in a PHP
application is using a file which defines the params necessary to establish the connection
with the database target and the application logic is charge of establish the connection. To
add database connection support our initial proposal defines the next config keys for
allowing the connection configuration.

ConfigKey Description

DB_CONNECTION_FILE_CONFIG File which contains the database connection
params.

DB_CONNECTION_CONFIG_PARAMS Map to define the params of the database
connection and their values.

Table 2. Database connection datbase

3.2.4.2 PHPWebAppSoftwareProcess

This interface extends the PHPWebAppService and SoftwareProcess indicating that it is a
PHP entity. SoftwareProcess defines several generic ConfigKeys and Effectors for managing
a process software generic such as [6]:

ConfigKey Description

START_TIMEOUT timeout allowed to init the software.

SUGGESTED_VERSION suggested stable version of the software

DOWNLOAD_URL URL from where to download the software.

INSTALL_DIR folder where to install the software modeled.

SUGGESTED_INSTALL_DIR alternative installation folder.

RUN_DIR folder to run the software (which could be installed or
not).etc

Table 3. PhpWebAppSoftwareProcess ConfigKeys

In addition, PhpWebAppSoftwareProcess describes the effectors to deploy and undeploy
applications.

¶ DEPLOY_GIT_RESOURCE and DEPLOY_TARBALL_RESOURCE: it allows an entity to be
deployed using the url where it is stored (a git repo or an tarball url) . The effector
returns the id of the deployed application.

¶ UNDEPLOY: it allows undeploying an entity which has already been deployed using
the id application.

¶ DEPLOYED_PHP_APPS: it contains the deployed apǇƭƛŎŀǘƛƻƴΩǎ ƛŘǎ ǘƻ ŀƭƭƻǿ ǘƘŜƳ ǘƻ ōŜ
managed. It is updated each time the deploy/undeploy effectors are executed.

20 D5.4.1 - Initial version of sw platform

3.2.4.3 PHPWebAppSoftwareProcessImpl

PhpWebAppSoftwareProcessImpl is an abstract class that implements PhpWebAppSoftware
and extends SeoftwareProcessImpl.

This class implements the generic behavior of the entity, defines the stop and initialize
methods, it allows the entity enable port, etc, to be known and defines new management
methods (as connectSensors()). Please note, that the getter and setter methods are deleted
from the UML class and the naming convention is a suffix "Impl" for the entity class. Below,
we present the definition methods:

¶ getEnableProtocols():it allows the enable protocols to be known, e.g. http (by
default) and https.

¶ connectSensors(): it connects the generic sensor with the data source, so we can say
that it is a generic method because almost all sensors used feed off the final PHP
support system, e.g. Apache status server page, etc. Thus, this method has to be
used @Override (and used) by the final class which specifies this abstract class.

¶ doStop(): it allows the system to be stopped. Again, it is a generic method and it
needs to be extended.

¶ getDriver(): it returns the driver used to manage this entity.

¶ deploy(String url)/undeploy(String targetName): we have mentioned that the
management mechanisms are contained in the driver, so these methods send the
deploy/undeploy request to the entity driver, which is described by the getDriver()
method. Moreover, these methods manage (update) the deployed application
sensor when an application is added or removed.

3.2.4.4 PhpWebAppDriver

The PhpWebAppDriver interface extends the generic Brooklyn Driver classes, in fact it
extends the SoftwareProcessDriver and the ProcessDriver.

Only. It defines several methods that have to be implemented in a specific class. In this case,
the most important methods could be deploy and undeploy which are used by the entity to
manage these tasks.

3.2.4.5 PhpWebAppSshDriver

The PhpWebAppSshDriver implements the aforementioned interface. It determines several
methods that allow the management of the real PHP support system:

¶ isProtocolEnalbe(): discovers the protocols which could be used over the real system
as http and https.

¶ install(): it allows the software needed to run the application to be installed and, in
this case, this method has to be @Override to install the deployment environment.
However, it contains the installation of the generic components necessary during the
lifecycle, in this case PHP and git clients.

¶ stop(): obviously, it stops the execution environment. Again, it has to be @Override

21 D5.4.1 - Initial version of sw platform

in any given class.

¶ postLaunch(): once the PHP environment has been installed and configured this
method carries out the management task needed by Brooklyn, like, for instance,
connect the ROOT_URL sensor that contains the root path of a server (which are
generated by inferRoot() method).

¶ getDeployDir() and getDeploySubdir(): return the folders which install and run the
applications.

¶ deploy_git_resource, deploy_tarball_resource and undeploy(): they contain logic to
deploy and undeploy an application in the final deployment environment. They
implement a generic methodology to carry out these tasks, but they could be
@Override in the specific class to define a new deployment methodology.

3.2.4.6 Apache Httpd Server

Apache httpd is the deployment environment selected to deploy and run a PHP application.
As we have already mentioned, the classes used to model this component are based on the
abstraction level explained in the previous section. Below, the class diagram used to add
Apache support for Brooklyn is shown in Figure 5. Please note, that the names of the classes
may be modified.

3.2.4.7 ApacheServer

ApacheServer interface extends the PhpSoftwareProcess to indicate that it is a PHP entity
and that wraps the final deployment environment to deploy and run PHP applications. It
determines the ConfigKey and the sensors of the Apache installation.

¶ SUGGESTED_VERSION: suggested stable version of the ApacheServer.

¶ DEPLOYMENT_TIMEOUT: represents the allowed timeout to deploy an application.

¶ INSTALL_DIR: folder where Apache is installed.

¶ CONFIGURATION_DIR: folder where the apache configuration files are stored.

¶ AVAILABLE_SITES_CONFIGURATION_FOLDER: folder that contains the configuration
and application deployment and run folders where the applications are deployed.

¶ DEPLOY_RUN_DIR: deployment and execution application folder. It is given from
AVAILABLE_SITES_CONFIGURATION_FOLDER.

¶ DEFAULT_GROUP: default by Apache, it is needed to run the applications deployed
in DEPLOY_RUN_DIR.

¶ HTTP_PORT: Http port where Apache is listening

¶ SERVER_STATUS: URL where the status of the server can be consulted

In order to allow the management of the PHP applications, we have added several sensor:

Sensor Description

TOTAL_ACCESSES Number of accesses.

22 D5.4.1 - Initial version of sw platform

TOTAL_KBYTES Total traffic in KBytes.

CPU_LOAD Percentage CPU load.

UP_TIME Total up time (in seconds).

REQUEST_PER_SEC Requests per second.

BYTES_PER_SEC Bytes processed per second.

BYTES_PER_REQ Bytes per request.

BUSY_WORKERS Number of busy workers.

Table 4. Apache sensors availables

3.2.4.8 ApacheServerImpl

ApacheServerImpl class implements the ApacheServer to indicate its PHP entity nature and
extends PhpWebAppSoftwareImpl (see Figure 5). It represents the Apache installation used
in the deployment environment.

It defines an enricher:

¶ serviceUpEnricher: to wrap the start up of the server. It provides the data needed
for the sensor isEnable.

In addition, it defines an HttpFeed to carry out the sensor pulling. This object will be used by
the methods in charge of the sensor initialization.

This class defines several getter and setter methods which are used by the generic classes
(PhpWebAppSoftwareProcessImpl and PhpWebAppSshDriver) to manage the entity.

¶ connectSensor(): it is responsible for initializing the sensors. It uses the httpFeed to
pull the data source. Please note, that this method uses an @Override the super
method implemented in PhpWebAppSoftwareProcessImpl.

23 D5.4.1 - Initial version of sw platform

Figure 5. Apache Web Server class diagram

3.2.4.9 ApacheDriver

ApacheDriver extends the ApacheDriver and the PhpWebAppSshDriver but it is an empty
interface, so it does not define any ConfigKey, sensor or method.

24 D5.4.1 - Initial version of sw platform

3.2.4.10 ApacheSshDriver

The ApacheSshDriver class contains the management based on Ssh of the Apache Server
installed. Please note, that currently the management is supported for a linux based system
(Debian), in successive versions the operations will be deployed to support all deployment
environments. This class defines several methods to implement at @Override their supers.

¶ getEntity(): returns entity that represents the Apache Web Server, in this case
ApacheServe.

¶ getPortMap(): returns enable protocols and their listened ports.

¶ getDeploySubDir(): returns the folder path where the PHP application can be
deployed.

¶ getRunDir(): determines the folder where the server is installed.

¶ install(): installs the server in the host. This method uses the super method which
installs the common software such as PHP and git.

¶ customize(): this method configures the Apache server to allow Brooklyn to be
managed.

¶ isRunning(): returns true when Apache is running and false otherwise.

¶ deploy_git_resource() and deploy_tarball_git(): deploy an application from a git
repo or a tarball URL (these method have been aforementioned before).

Lightweight PHP support: Brooklyn supports a simpler and lightweight approach to support
entity that are not supported by Brooklyn catalog, yet: VanillaSoftwareProcess + YAML.

3.3 Monitor mechanisms

Here we describe the monitoring mechanisms available in Brooklyn that allows SeaClouds to
define new data retrieving mechanisms as well as policies that will act over Brooklyn sensors
triggering some minor reconfiguration on the managed systems.

3.3.1 Data feeds

The usual strategy when reading information and value changes on sensors is to perform a
periodic query or request over certain service or method. Different kinds of data feeds are
provided by Brooklyn and they implement the core functionality that reads the sensors from
the deployed modules, as shown in Figure 6.

25 D5.4.1 - Initial version of sw platform

The existing feeds are structured according to the Figure 6:

¶ Abstract Feed: It captures common fields and processes for sensor feeds. These
generally poll or subscribe to get sensor values for an entity. They make it easy to
poll over http, jmx, etc, and they provide the basic lifecycle methods for
starting/stopping feeds.

¶ HttpFeed: Provides a feed of attribute values, by polling over http.

¶ JmxFeed: Provides a feed of attribute values, by polling or subscribing over jmx.

¶ SshFeed: Provides a feed of attribute values, by polling over ssh.

¶ FunctionFeed: Provides a feed of attribute values, by periodically invoking functions.

¶ ShellFeed: Provides a feed of attribute values, by executing shell commands.

3.3.1.1 User-defined sensors

Application-level metrics can be defined in some part of the process of deploying an
application, creating a connection to the deployed sensor and retrieving the desired metrics.
We have developed these monitoring mechanisms for a deployer unit such as Brooklyn, in
which sensors can be defined on a YAML document.

We made use of EntityInitializer interface to implement a dynamic way of defining sensors
that will retrieve information from a remote URI, typically from a monitoring service that
the user provided.

3.3.1.2 EntityInitializer

Instances of EntityInitializer supply logic which can be used to initialize entities. These can
be added to an EntitySpec programmatically, or declared as part of YAML recipes in a
brooklyn.initializers section. In the case of the latter, implementing classes should define a
no-arg constructor or a Map constructor so that YAML parameters can be supplied.

Lǘ ǎƛƳǇƭȅ Ŏƻƴǘŀƛƴǎ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ŦƻǊ ǘƘŜ ƳŜǘƘƻŘ άŀǇǇƭȅέ ǿƘƛŎƘ ǿƛƭƭ ōŜ ŜȄŜŎǳǘŜŘ ƻǾŜǊ ŀƴ
EntityLocal and perform the needed adjustments.

Figure 6. Data feeds hierarchy

26 D5.4.1 - Initial version of sw platform

3.3.1.3 AddSensor

This class extends EntityInitializer (see Figure 7) and sets the main common attributes and
methods on adding a new sensor to a given entity, such as:

¶ name: Name which will identify the sensor to be created.

¶ period: Periodic time of the poll requests

¶ targetType: This attribute is necessary to convert the monitoring data into a certain
sensor type. Type needs to be specified with a full Java classname but many of the
most used types are simplified to be more convenient (String, Integer, Double, or
CƭƻŀǘΣ ΧύΦ

Figure 7. AddSensor class diagram

3.3.1.4 HttpRequestSensor

This class creates a HttpFeed that will periodically generate an HttpRequest to a given URI,
and dumping this information into a new sensor.

One of the requirements of using this sensor is that the HttpResponse from the monitoring
URI needs to be a JSON document. JSON format makes it simpler to read more than one
sensors on each request. In this way, we make use of json-path [7], a library that gives full
path access to every attribute defined on a JSON document at any level.

To use this sensor initializer the following configuration keys need to be specified:

¶ uri: monitoring service URI that will generate the JSON document with sensors data.

¶ jsonPath: full path to the sensor value. (Examples on how to use this path notation

27 D5.4.1 - Initial version of sw platform

can be found at http://goessner.net/articles/JsonPath/).

3.3.2 Polices

Policies perform the active management enabled by Brooklyn. They can subscribe to entity
sensors and be triggered by them or they can run periodically. Policies can add subscriptions
to sensors on any entity. Normally a policy will subscribe to its related entity, to the child
entities, and/or those entities which are members.

When a policy runs it can:

¶ perform calculations,

¶ look up other values,

¶ invoke effectors (management policies) or,

¶ cause the entity associated with the policy to emit sensor values (enricher policies).

Entities can have zero or more Policy instances attached to them. Policies are highly
reusable as their inputs, thresholds and targets are customizable.

3.3.2.1 Mangement Policies

¶ Resizer Policy

¶ Increases or decreases the size of a Resizable entity based on an aggregate sensor
value, the current size of the entity, and customized high/low watermarks.

¶ A Resizer policy can take any sensor as a metric, have its watermarks tuned live, and
target any resizable entity - be it an application server managing how many instances
it handles, or a tier managing global capacity.

¶ e.g. if the average request per second across a cluster of Tomcat servers goes over
the high watermark, it will resize the cluster to bring the average back to within the
watermarks.

3.3.2.2 EnricherPolicies

¶ Delta: converts absolute sensor values into a delta.

¶ Time-weighted Delta: converts absolute sensor values into a delta/second.

¶ Rolling Mean: converts the last N sensor values into a mean.

¶ Rolling Time-window Mean: converts the last N seconds of sensor values into a
weighted mean.

¶ Custom Aggregating: aggregates multiple sensor values (usually across a tier, esp. a
cluster) and performs a supplied aggregation method to them to return an aggregate
figure, e.g. sum, mean, median, etc.

3.4 Dashboard code description

In this release we have presented a basic frontend using HTML5 and JavaScript libraries. In
addition, in this version we have not implementing the SeaClouds unified API yet (it is under

http://goessner.net/articles/JsonPath/

28 D5.4.1 - Initial version of sw platform

implementation), instead, to ensure the correct functionality of the Deployer connected
ǿƛǘƘ ǘƘŜ aƻƴƛǘƻǊΣ ǿŜ ōŀǎŜ ƻǳǊ ƛƴƛǘƛŀƭ ŘŜǎƛƎƴ ƻƴ ŜȄƛǎǘƛƴƎ !tLΩǎ ƭƛƪŜ .Ǌƻƻƪƭȅƴ ǘƻ ƎŀǘƘŜǊ ǘƘŜ
needed information.

3.5 SLA Service code description

The SLA Service is a WS-Agreement compliant module. The Core component of the SLA
Service is a RESTful web service developed in Java. It uses mysql as database. The code is not
yet publicly available at the time of the writing of the deliverable.

3.5.1 Repository

The repository entities are JPA entities that mimic the WS-Agreements entities, i.e.
templates and agreements. The repository also provides Data Access Objects (DAOs) to
isolate the use of the entities from the underlying technology.

A first version of the class diagram is shown in Figure 8.

Figure 8. SLA Repository Architecture

The diagram shows the main entities in the specification and the way they are related:

¶ A Provider offers a service: a software service, hardware resources, etc.

¶ The service is described by ServiceDescriptionTerms with a Domain Specific
Language. The ServiceDescriptionTerms are intended to define a service that has to
be provisioned. This sla module needs external provision.

¶ The provided service is represented by a Template, and the Template can be used to
generate an Agreement.

¶ An agreement is a "document" that associates a Service and a Consumer. When the
relation is in negotiation-phase, it's called an AgreementOffer. Once the agreement
is accepted, it's called a Agreement.

¶ A Template and an Agreement can describe some restrictions to be fulfilled by the

29 D5.4.1 - Initial version of sw platform

Consumer or by the Provider. The restrictions must be defined in a Domain-Specific
Language

¶ A violation of any restriction generates a Violation.

3.5.2 Assessment

The assessment of existing agreements is a process periodically executed in a thread. This
process walks over the agreements and checks if the agreements needs to be enforced. If
so, a task is created is pushed to a Thread Pool Executor, to be executed at a later time. The
tasks are pulled from the pool, and then executed. The needed metrics are retrieved from
the source (in this draft implementation, from Brooklyn sensors), and the constraints are
evaluated. This QoB evaluation generates penalties that will be notified to the Application
Administrator. The sequence diagram in Figure 9 summarizes the process.

Figure 9. Assessment Behaviour

3.5.3 SLA Manager

The SLA Manager is the module acting as a RESTful web service. The REST endpoints are
JAX-RS annotated classes, being jersey the JAX-RS implementation.

There is a resource endpoint per each interesting entity:

¶ Providers

¶ Templates

¶ Agreements

¶ Enforcement jobs

¶ Violations

Additionally, another endpoint is exposed to receive metrics in case of having Monitoring
Managers that push metrics to interested observers.

30 D5.4.1 - Initial version of sw platform

4. Installation and Configuration

In this section, we present the pre-requisites and the how to instal and configure the

corresponding pieces to execute the first prototype of the SeaClouds software platform.

4.1 Deployer and Monitor (and Dashboard)

Here we detail the steps required to install and configure the deployment and monitoring of

a cloud application using the first version of the SeaClouds platform.

4.1.1 Brooklyn Installation

Currently, the Brooklyn version that contains the features described in this document is
stored in the following repository (in the branch phpAppDBSupport):

https://github.com/kiuby88/incubator-brooklyn

The repo can be cloned in any repository using git and the necessary url:

https://github.com/kiuby88/incubator-brooklyn.git

The following command can be used:

$ git clone https://github.com/kiuby88/incubator-brooklyn.git

brooklyn$ will be the Brooklyn repository.

Before that Brooklyn will be compiled, it is necessary select the branch. So, you can use the
command:

brooklyn$ git branch phpAppDBSupport

Next, brooklyn could be compiled using mvn command:

brooklyn$ mvn clean install

If you find a test error or Rat error, you are able to use the next command to sky it:

brooklyn$ mvn clean install -DskipTest=true -Drat.ignoreErrors=true

To launch Brooklyn, let's setup some paths for easy commands.

$ cd brooklyn$

$ BROOKLYN_DIR="$(pwd)"

$ export PATH=$PATH:$BROOKLYN_DIR/bin/

A quick test drive by launching Brooklyn can be done using:

$ brooklyn launch

Brooklyn will output the address of the management interface:

¶ INFO Starting brooklyn web-console on loopback interface because no security
config is set.

¶ INFO Started Brooklyn console at http://127.0.0.1:8081/

¶ But before we really use Brooklyn, we need to setup some Locations.

https://github.com/kiuby88/incubator-brooklyn
https://github.com/kiuby88/incubator-brooklyn.git
https://github.com/kiuby88/incubator-brooklyn.git
http://127.0.0.1:8081/
http://127.0.0.1:8081/

31 D5.4.1 - Initial version of sw platform

¶ Stop Brooklyn with ctrl-c.

4.1.2 Pre-requisites

This section lists the general software prerequisites to install and run the components
belonging to the SeaClouds platform.

¶ Java (JDK 1.6)

¶ Apache Maven: (version Maven 3.x)

¶ GIT

Now it is time to tell to the system, that where it can find Maven, Ant and Tomcat. To do
this, the environment variables (and PATHs) will be set.

4.1.3 Brooklyn Configuration

It is necessary perform a configuration of Brooklyn. Brooklyn deploys applications to
Locations. Locations can be clouds, machines with fixed IPs or localhost (for testing).

Brooklyn loads Location configuration from ~/.brooklyn/brooklyn.properties .

First, create a .brooklyn folder in your home directory and download the template
brooklyn.properties to that folder:

$ mkdir ~/.brooklyn

$ cd ~/.brooklyn

$ wget /use/guide/quickstart/brooklyn.properties

Next, open brooklyn.properties in a text editor and add your cloud credentials. If you would
rather test Brooklyn on localhost, follow these instructions to ensure that your Brooklyn can
access your machine.

Then, restart Brooklyn:

$ brooklyn launch

Next, you can downoload the SeaClouds Dashboard proposal, available in the SeaClouds
GitHub:

$ git clone https://github.com/SeaCloudsEU/demo-dashboard.git

After downloading it, you only need to change the endpoint where the dashboard will
ǎŜŀǊŎƘ ŦƻǊ .ǊƻƻƪƭȅƴΦ ¢Ƙƛǎ ǎŜǘǳǇ ƛǎ ƛƴǎƛŘŜ ǘƘŜ ŦƛƭŜ άŎƻƴŦƛƎΦƧǎέ ƛƴ άƧǎέκ ŦƻƭŘŜǊΦ

Please notice that if you run the dashboard from local filesystem (by double clicking
ƛƴŘŜȄΦƘǘƳƭύ ȅƻǳ ǿƛƭƭ ƴŜŜŘ ǘƻ ŘƛǎŀōƭŜ ά/Ǌƻǎǎ-hǊƛƎƛƴ wŜǎƻǳǊŎŜ {ƘŀǊƛƴƎέ ǎŜŎǳǊƛǘȅ ǇǊƻǘŜŎǘƛƻƴ
from your browser. We encourage executing the Dashboard in a web server.

4.2 SLA Service Installation

In this section, we describe the procedure to be performed to install the SLA service of the

SeaClouds platform.

http://brooklyncentral.github.io/use/guide/quickstart/brooklyn.properties
http://brooklyncentral.github.io/use/guide/locations/
https://github.com/SeaCloudsEU/demo-dashboard.git

32 D5.4.1 - Initial version of sw platform

4.2.1 Requirements

The requirements to install a working copy of the Core component of the SLA Service are:

¶ Oracle JDK >=1.6

¶ Database to install the database schema for the service: Mysql>=5.0

¶ Maven >= 3.0

4.2.2 Creating the mysql database

From mysql command tool, create a database (with a user with sufficient privileges, as
root):

$ mysql -p -u root

mysql> CREATE DATABASE sla;

Create a user:

mysql> CREATE USER slauser@localhost IDENTIFIED BY '_sla_';

mysql> GRANT ALL PRIVILEGES ON sla.* TO slauser@localhost; -- optional WITH GRANT
OPTION;

From command prompt, create needed tables:

$ mvn test exec:java -f sla-repository/pom.xml

Another option to create the database is execute a sql file from the project root directory:

$ bin/restoreDatabase.sh

The names used here are the default values of the sla core. See "Configuration" and
"Running" sections to know how to change these values.

4.2.3 Configuration

A configuration.properties.sample that is placed in the parent directory has to be copied to
configuration.properties.

Several parameters can be configured through this file.

1. db.* allows to configure the database username, password and name in case it has
been changed from the proposed one in the section "Creating the mysql database".
It can be selected if queries from hibernate must be shown or not. These parameters
can be overriden at deployment time through the use of environment variables (see
section Running),

2. log.* allows to configure the log files to be generated and the level of information,

3. enforcement.* several parameters from the enforcement can be customized,

4. service.basicsecurity.* basic security is enabled These parameters can be used to set

the user name and password to access to the rest services.

33 D5.4.1 - Initial version of sw platform

4.2.4 Compilation

To compile the package:

$ mvn install

If you want to skip tests:

$ mvn install -Dmaven.test.skip=true

The result of the command is a war package in sla-service/target directory.

4.2.5 Running

Now, you can deploy the war to an application server. If you are using Tomcat, you must
copy the war to $TOMCAT/webapps.

Alternatively, you can run an embedded tomcat:

$ bin/runserver.sh

that is just a shortcut for:

$ mvn tomcat:run -f sla-service/pom.xml

Some configuration parameters can be overridden using environment variables or jdk
variables. The list of overridable parameters is:

DB_DRIVER; default value is com.mysql.jdbc.Driver

DB_URL; default value is jdbc:mysql://${db.host}:${db.port}/${db.name}

DB_USERNAME; default value is ${db.username}

DB_PASSWORD; default value is ${db.password}

DB_SHOWSQL; default value is ${db.showSQL}

For example, to use a different database configuration:

$ export DB_URL=http://localhost:8080/sla

$ export DB_USERNAME=sla

$ export DB_PASSWORD=<secret>

$ bin/runserver.sh

4.2.6 Testing

Check that everything is working:

$ curl http://localhost:8080/sla-service/providers

The actual address depends on the application server configuration. The embedded tomcat

uses http://localhost:8080/sla-service/ as service root url.

4.3 Demo Execution

Next, we show the CAMP YAML blue print, which we have generated and used to deploy the

http://localhost:8080/sla-service/providers
http://localhost:8080/sla-service/

34 D5.4.1 - Initial version of sw platform

Nuro early application:

name: PHP NuroCaseStu dy
services:
- serviceType: brooklyn.entity.webapp.apache.ApacheServer
 name: Apache Server
 id: apache
 location: localhost
 brooklyn.config:
 http_port: 80
 app_git_repo_url: <NURO_CASE_STUDY_GIT_REPO>
 db_connection_file_config: config/config.php
 db_connection_config_params:
 g_DatabaseHost: $brooklyn:formatString("%s", component("db").attributeWhenReady("
 host.address"))
 g_DatabasePort: $brooklyn:component("db").attributeWhenReady("mysql.port")
 g_DatabasePassword: $ brooklyn:component("db").attributeWhenReady("mysql.password")
 g_DatabaseUser: root
 brooklyn.initializers:
 - type: brooklyn.entity.software.http.HttpRequestSensor
 brooklyn.config:
 name: nuro.analytics_time
 #uri: $brooklyn:formatString("% s/sensor.php",component("apache")
 .attributeWhenReady("host.address"))
 uri: http://<%brooklyn - machine- IP%>/nurocasestudyphp5 - 5/sensor.php
 jsonPath: $.database1.analytics_time
 targetType: double

- serviceType: brooklyn.en tity.database.mysql.MySqlNode
 id: db
 name: MySQL Node
 location: localhost
 brooklyn.config:
 datastore.creation.script.url: <NURO_CASE_STUDY_SQL>

¶ Notes:

Currently, the HTTP sensor needs to define the IP where the application containing the
sensor will be deployed. For example, if the application has to be deployed in localhost,
<%brooklyn-machine-IP%> will be substituted by localhost or 127.0.0.1.

Since the code of the Nuro Case is confidential, currently, the values of
<NURO_CASE_STUDY_GIT_REPO> and <NURO_CASE_STUDY_SQL>, related to the Git repo
and the Database respectively, can be found in the Deliverable 6.3.1 [8].

In order to illustrate how the deployment and monitoring of the Nuro early Case Study, a
video have been recorded:

https://drive.google.com/file/d/0Bw9KJPN8k2glaXlCVGxZSmw0dUk/edit?usp=sharing

https://drive.google.com/file/d/0Bw9KJPN8k2glaXlCVGxZSmw0dUk/edit?usp=sharing

35 D5.4.1 - Initial version of sw platform

5. Conclusion

This deliverable accompanies the first prototype of the SeaClouds platform. The software
prototype can be downloaded from https://github.com/SeaCloudsEU/SeaCloudsPlatform.

Along the document, we have described the main services and functionalities currently
implemented in the initial version of the software platform, containing mainly the deployer,
monitoring, and SLA components, related to the run-time environment of SeaClouds.

As regards the design-time part, some research efforts are being performed proposing the
algorithms needed to the discovery process and the planner component, including the
matchmaking and the optimizer processes. In particular, currently, a simple matchmaking
mechanism have been implemented, although at the moment of writing this document
some efforts are required to detail the implementation of this mechanism, so we decided to
detail it in the next deliverable related to the integration of components in the software
platform.

https://github.com/SeaCloudsEU/SeaCloudsPlatform

