

SeaClouds Project

D5.1.3 – Final Integrated Platform
Project Acronym SeaClouds

Project Title Seamless adaptive multi-cloud management of service-based
applications

Call identifier FP7-ICT-2012-10

Grant agreement no. 610531
Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP5 Integration, infrastructure delivery and GUI
Deliverable code D5.1.3
Deliverable Title Final Integrated Platform
Nature Prototype
Dissemination Level Public
Due Date: M24
Submission Date: 20th of October 2015
Version: 1.0
Status Final
Author(s): Miguel Barrientos (UMA), Jose Carrasco (UMA), Javier Cubo

(UMA), Elisabetta Di Nitto (Polimi), Michele Guerriero (Polimi),
Adrián Nieto Pérez (UMA), Marc Oriol (UPI), Diego Pérez (Polimi),
Román Sosa (ATOS), Andrea Turli (Cloudsoft), Simone Zenzaro
(UPI)

Reviewer(s) Javier Cubo (UMA)

D5.1.3- Final Integrated Platform

2

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework
Programme

 Public X

 Restricted to other programme participants (including the Commission)

 Restricted to a group specified by the consortium (including the Commission)

 Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status Authors, contributors, reviewers

0.1 26/08/2015 ToC and distribution of work Elisabetta Di Nitto

0.2 19/09/2015 Sect 2, final integrated platform Diego Pérez

0.3 29/09/2015 Check contributions and corrections
along all the deliverable

Diego Pérez

0.4 14/10/2015 internal review Javier Cubo

1.0 19/10/2015 Final version Diego Pérez, Elisabetta Di Nitto

D5.1.3- Final Integrated Platform

3

Table of Contents

Executive Summary ... 4

1 Introduction .. 5

1.1 Scope and outcome of the Deliverable .. 5

1.2 Structure of the document .. 5

1.3 List of Acronyms ... 6

2 Architecture of SeaClouds Final Integrated Platform .. 7

3 How to use the SeaClouds Integrated Platform: an example .. 11

3.1 Description of the Application Example .. 11

3.2 Definition of the application topology and of the Abstract Application Model 14

3.3 From AAM to TOSCA DAM ... 19

3.4 Definition of Monitoring Rules and SLA ... 22

3.5 Deployment on IaaS/PaaS .. 26

3.6 Execution, visualization of monitoring data, autoscaling .. 28

4 Conclusions ... 30

References .. 31

List of Figures

Figure 1: Final Integrated Platform ... 7

Figure 2: Intermediate Integrated Platform presented in D5.1.2 .. 9

Figure 3: Final Architecture presented in [2] .. 11

Figure 4: Application Chat topology ... 13

Figure 5: First step of SeaClouds wizard ... 15

Figure 6: Second step of SeaClouds wizard .. 16

Figure 7: SeaClouds Deployer - Deployment process and summary .. 27

Figure 8: Legacy monitoring view with autoscaling status ... 29

Figure 9: Tower4Clouds + Graphite + Grafana monitoring platform ... 29

Figure 10: SLA View showing a violation .. 30

List of Tables

Table 1: Acronyms ... 6

Table 2: Seaclouds Integrated components description .. 9

D5.1.3- Final Integrated Platform

4

Executive Summary

This deliverable is the final integrated platform developed within the SeaClouds project.
This document aims at accompanying the software prototype by offering information
about: i) the released and integrated components and their interactions; ii) the way a user
can exploit such platform to compile, starting from an Abstract Application Model (AAM),
the Deployable Application Model (DAM), and can then deploy, monitor, check the SLA
(Service Level Agreement), and reconfigure an example application.

D5.1.3- Final Integrated Platform

5

1 Introduction

1.1 Scope and outcome of the Deliverable

This deliverable is constituted by the final version of the SeaClouds Integrated Platform plus the

following elements:

1. This document that aims at guiding users of the SeaClouds Final Integrated Platform

through the identification of the main components of the current platform and the

relationships between them.

2. An application example, together with the artifacts needed to describe it (AAM and ADP

explained in [1] in the TOSCA specification, and DAM also explained in [1] in the TOSCA

and CAMP format), the cloud offers that match the application, the associated

monitoring rules and the SLA service.

The previous version of the Integrated Platform required some manual steps for supporting the

lifecycle of a multi-cloud application, from the definition of the application topology down to

the deployment phase. The current version features a complete GUI that supports the users in

going through all phases and makes complex details transparent to all of them. Moreover, the

Final Integrated Platform supports deployment on PaaS and automatic repair of applications.

The platform will be evolved till the end of the project to improve the support to application

repair/replan and to address the new requirements that will be raised by its users.

The SeaClouds project is continuing to pursue a fully open source approach not only releasing

all software with an Apache 2.0 license on a github repository

https://github.com/SeaCloudsEU, but also exploiting and contributing to other open source

research initiatives such as and Brooklyn1 and Alien4Clouds2.

The SeaClouds Final Integrated Platform follows the architecture defined in Deliverable D2.4

[2].

1.2 Structure of the document

This document has the following structure:

● Section 2 describes the SeaClouds Final Integrated Platform and the changes with

respect to the architecture in Deliverable D2.4 [2], and the previous version of the

Integrated Platform [3].

● Section 3 shows how the user can exploit the Integrated Platform to deploy an example

application.

1
 https://brooklyn.incubator.apache.org/

2
 http://alien4cloud.github.io

https://github.com/SeaCloudsEU

D5.1.3- Final Integrated Platform

6

● Finally, Section 4 provides some conclusions.

1.3 List of Acronyms

Here we list the different acronyms that will be used in this document.

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

GUI Graphical User Interface

API Application Programming Interface

AAM Abstract Application Model

DAM Deployable Application Model

ADP Abstract Deployment Plan

URI Uniform Resource Identifier

YAML YAML Ain’t Markup Language

XML eXtensible Markup Language

REST Representation state transfer

LAM Live Application Model
Table 1: Acronyms

D5.1.3- Final Integrated Platform

7

2 Architecture of SeaClouds Final Integrated Platform

This section describes the Final Integrated Software Platform, highlighting the updates in the

architecture with respect to the intermediate software Platform released at M19 and described in

D5.1.2 [3] to bring it closer to the Final Architecture defined in D2.4 [2].

Overall, few modifications have been introduced in the architecture delivered in D5.1.2 to achieve the

required functionality of components, whereas some modifications have been introduced to achieve

better communication among components and Platform integration.

Figure 1 depicts the architecture of the final SeaClouds integrated platform. To make easier the

description of the modifications made in the last months, Figure 2 presents the architecture shown in

D5.1.2 [3] and Figure 3 shows the final architecture described in D2.4 [2].

Figure 1: Final Integrated Platform

SeaClouds components:

Seaclouds components continue to be released under the Apache 2.0 license and are available at the

URL https://github.com/SeaCloudsEU/SeaCloudsPlatform. Components called Dashboard, Planner,

Deployer, SLA Service and Monitor (incorporating the Tower4Clouds3 component developed as part of

MODAClouds4) were already integrated and described in the intermediate integrated platform in

3
 https://github.com/deib-polimi/tower4clouds/

4
http://www.modaclouds.eu

https://github.com/SeaCloudsEU/SeaCloudsPlatform

D5.1.3- Final Integrated Platform

8

D5.1.2. A significant difference can be appreciated in the Deployer component in Figure 1. The reason is

that now we can give concrete details of the previous Deployer engine and Cloud adapters modules that

were part of the Deployer component showed in Figures 2 and 3. These previous modules are replaced

with Brooklyn as Deployer engine; and by Php support, and Openshift support, CloudFoundry support as

Cloud adapters. Moreover, a TOSCA support module is also added, at present under development,

which is in charge of providing Brooklyn with capabilities to deploy application specified in TOSCA and

will be eventually included in the official Brooklyn release. Finally, Live Model is no longer part of the

Deployer architectural view since it is information managed internally by Brooklyn. Another component

that was not integrated in the intermediate platform, as it does not appear in Figure 2, and now it is

part of the final integrated platform is the Discoverer.

Table 2 shows again the description of SeaClouds components, highlighting in boldface the differences

with respect to their characteristics provided in D5.1.2. We have added an additional column to the

table in order to provide a better distinction between the external libraries used by components, their

subcomponents and their dependencies with other first-level SeaClouds components.

Componen
t name

Programmi
ng
language

External libraries
used

Subcomponents Dependencies with
other components

Offered
software
interfaces

Discoverer Java Apache Tomcat,
JSonSimple,
Alien4Cloud
TOSCA parser

Cloud Offerings Spiders None REST API

Dashboard HTML5,
JavaScript,
Java

Bootstrap library
5

Angular JS
6
,

Dropwizard
7

 Planner (including
new dependency
with AAMgenerator),
Deployer, Monitor,
SLA Service

 REST API

Planner Java Dropwizard,
Alien4Cloud
TOSCA parser,
SnakeYaml

Matchmaker, Optimizer,
AAM generator, DAM
generator

Discoverer,
Dashboard, Monitor,
Deployer

REST API

Deployer Java Apache Brooklyn Deployer Engine
(detailed to Brooklyn,
Php support, Ppenshift
support CloudFoundry
support and TOSCA
support), Repairing
rules generator

Planner, Monitor REST API

5
 http://getbootstrap.com

6
 https://angularjs.org

7
 http://www.dropwizard.io/

D5.1.3- Final Integrated Platform

9

SLA Service Java jersey-1.18.1,
spring-4.1.4, jpa-
2.0-api, jackson-
2.5.1, qos-
models-2.4

SLA manager, SLA
generator

Monitor, in
particular,
addObserver and
sendMonitoringRuleI
nstalled functions

REST API

Monitor Java fuseki-server.jar
8

rsp-services-
csparql.jar

9
snakeyaml.jar

Monitoring Manager,
Data Collector, Data
Analyzer, Monitoring
Rules Generator

Deployer, SLA
Service, and
Dashboard

REST API

Table 2: Seaclouds Integrated components description

Looking at Figures 1 and 3 we can see that all the components of the Final Architecture have already

been integrated in the platform.

Figure 2: Intermediate Integrated Platform presented in D5.1.2

SeaClouds inter-component communication

Significant effort has been done in the last months towards the interconnection of components,

accepted inputs of each component and produced outputs. This effort has led to the inclusion of new

modules in the main architectural components, which do not add new functionality (i.e., component

8
 http://archive.apache.org/dist/jena/binaries

9
 https://github.com/deib-polimi/rsp-services-csparql

http://archive.apache.org/dist/jena/binaries
https://github.com/deib-polimi/rsp-services-csparql

D5.1.3- Final Integrated Platform

10

behavior given in previous D5.1.2 is completely valid), but create decoupled code to manage inputs and

outputs that are easier to understand by other developers. Concretely, these new modules are:

● AAM Generator in Planner component. This module is in charge of creating the AAM in the

same TOSCA syntax as the Planner understands. The Dashboard component imports this

module in order to create appropriate AAM models.

● DAM generator in Planner component. This module is in charge of creating the TOSCA DAM

that will be used by the rest of the modules with the information included in the format that is

understood by Dashboard, SLA Service, Monitor and Deployer.

● Monitoring rules generator in Monitor component. This module creates the monitoring rules in

the syntax that is understood by the Data Analyzer. Since these monitoring rules are included in

the DAM, this new module helps the DAM generator module in Planner component to create

them in the correct syntax.

● Repairing policy generator in Deployer component. This module creates the information for

application repairing (e.g., information for scaling up/down the application or restart single

modules) in the syntax understood by the Deployer Engine (i.e,. Apache Brooklyn). Since this

policy is included in the DAM, this new module helps the DAM generator in Planner to create it

in the correct syntax.

● New Data Collector in Deployer. This Data collector is used by the Monitor to collect runtime

information regarding the application’s health. The Monitor uses this information to trigger

alerts of application malfunction to the Dashboard when necessary.

D5.1.3- Final Integrated Platform

11

Figure 3: Final Architecture presented in [2]

3 How to use the SeaClouds Integrated Platform: an example

The software application here considered for illustrating SeaClouds behavior is brought from

Apache Brooklyn deploying tutorial [4]. This application is part of the Brooklyn blueprint and

provides enough complexity to exemplify the current Seaclouds capabilities. This document

does not describe the installation process of SeaClouds Platform since such process is detailed

in SeaClouds Deliverable D5.4.2 [5], which is delivered concurrently with this document. In the

following subsections we describe the functionality and structure of the application (Section

3.1), then we describe how the SeaClouds user can define the application topology using the

SeaClouds GUI thus defining the corresponding AAM (Abstract Application Model) (Section 3.2).

We show how, starting from this AAM, the matchmaking and optimization process works

(Section 3.3). After that, we describe the monitoring rules and the SLA associated to the

application (Section 3.4) and the deployment of the corresponding application (Section 3.5).

Finally, we show how the application is executed, monitored and repaired (Section 3.6).

3.1 Description of the Application Example

The following description has been integrally taken from Deliverable 5.1.2 and is included here

to make this deliverable self-contained.

D5.1.3- Final Integrated Platform

12

The application example implements a simple web chat room. Concretely, users can send

messages providing their name and the message text. These messages are stored in a database

and they are shown to all the chat users. A user can leave the room and, when she/he

eventually returns, can still see the previously sent messages. The software architecture of the

application consists of the following types of modules.

● A web interface consisting of three different web pages: a welcome page, a page that

lists links to the provided application functionality, and a chat page to interact with the

business logic.

● An external message database.

Web interface is packaged in a .war (Web application ARchive) file chat-webApplication.war10

which uses an external database to store and retrieve students’ information.

The application deployment executes on top of application server (e.g., Tomcat 7) to deploy

chat-webApplication.war and requires the Message Database module for its data

persistence. In turn, Message Database module requires a MySQL database management

system.

Figure 4 shows the architectural topology of the application example.

10

 http://search.maven.org/remotecontent?filepath=io/brooklyn/example/brooklyn-example-hello-world-sql-

webapp/0.6.0/brooklyn-example-hello-world-sql-webapp-0.6.0.war

http://search.maven.org/remotecontent?filepath=io/brooklyn/example/brooklyn-example-hello-world-sql-webapp/0.6.0/brooklyn-example-hello-world-sql-webapp-0.6.0.war
http://search.maven.org/remotecontent?filepath=io/brooklyn/example/brooklyn-example-hello-world-sql-webapp/0.6.0/brooklyn-example-hello-world-sql-webapp-0.6.0.war

D5.1.3- Final Integrated Platform

13

Figure 4: Application Chat topology

The application example is a preexisting one. Without using SeaClouds, someone willing to

deploy it on some cloud would need to go through the following steps:

● Select the cloud services to be used, assess that they fit the needs of the application,

and acquire these services from some cloud provider.

● Assuming that we have selected an IaaS cloud, start the virtual machines.

● Configure and start an application server.

● Configure and start a database management system.

● Set up the Message database.

● Configure the application to use the remote database.

● Deploy chat-webApplication.war on the application server.

● Be aware of the application behavior and, when necessary, perform reconfigurations

actions such as scale in/out the application or reboot failing resources.

The goal of SeaClouds with respect to this application example is to simplify all above work by

automatizing most of the steps or guide non-expert users where needed. Moreover, the goals

are also to i) ensure that the selected cloud resources are appropriate, given the characteristics

of the application and the trade-off between service characteristics and cost; and ii) monitor

the performance of the application and make sure that, given the SLA offered by the selected

cloud provider, any violation is communicated to the operator.

D5.1.3- Final Integrated Platform

14

In this release of the SeaClouds platform, we also tackle selection and usage of PaaS services

and, partially, the possibility to change the application deployment to deal with violations of

the SLA or of generic QoS parameters.

Application requirements

In order to demonstrate the ability of SeaClouds to manage application with technical and

quality requirements, we assume that the example application has the following requirements:

● The database is MySQL 5.0 and needs 50GB of size.

● The application server has to be able to execute Java.

● The application availablity should be higher than 99.8%.

● The application expected response time is lower than 2 seconds for an arrival rate of 50

messages per minute.

● The chat owner organisation expects to spend less than 200 Euros per month for

executing the application on a cloud.

For reasoning over response time requirements, we also provide the following information that

are assumed to be acquired by studying the behavior of the application: each message sent

through the application GUI produces, on average, two queries to the database; in the testing

environment a request took in average 50ms to execute the code in the web interface and

30ms to execute a query to the database; the testing environment was composed of virtual

machines of type hp_cloud_services.2xl.

In order to demonstrate the new capability of SeaClouds Deployer component to manage

application deployments on PaaS, we also impose the requirement “the application server

where chat-webApplication.war is deployed must be a PaaS”.

3.2 Definition of the application topology and of the Abstract Application Model

The application topology is entered by the user through the New Application wizard in the User

Interface. The first step in the wizard, shown in Figure 5, asks for the name of the application

and a set of properties needed if the user wants to optimize the resources used by the

application.

D5.1.3- Final Integrated Platform

15

Figure 5: First step of SeaClouds wizard

The second step in the wizard, illustrated in Figure 6, allows the user to define the components

that the application is composed of. For each component, the user has to select:

● The type of component, among web application, database and message queue (other

types of services will be added when required).

● Technological requirements: language of the component or type of database, versions,

etc.

● QoS requirements for the module.

● Desired infrastructure where to deploy the component on: IaaS or PaaS.

● Dependency relationships between components.

The complete description of types and properties are in deliverable D5.3 "Implementation of

the User Interface" [6].

D5.1.3- Final Integrated Platform

16

Figure 6: Second step of SeaClouds wizard

This wizard step produces a model of the application, in JSON11 format, shown in Listing 1.

{

 "name": "WebChat application",

 "nodes": [

 {

 "name": "Chat",

 "type": "WebApplication",

 "properties": {

 "language": "JAVA",

 "artifact": "http://www.seaclouds.eu/artifacts/chat-webApplication.war",

 "min_version": "6",

 "infrastructure": "platform",

 "container": "webapp.tomcat.TomcatServer",

 "benchmark_rt": "50",

 "benchmark_platform": "hp_cloud_services.2xl"

 }

 },

 {

 "name": "MessageDatabase",

 "type": "Database",

 "properties": {

11

 http://json.org

D5.1.3- Final Integrated Platform

17

 "category": "database.mysql.MySqlNode",

 "artifact": "http://www.seaclouds.eu/artifacts/create-message-database.sql",

 "min_version": "5.0",

 "max_version": "5.0",

 "disk_size": "50",

 "infrastructure": "compute"

 "benchmark_rt": "30",

 "benchmark_platform": "hp_cloud_services.2xl"

 }

 }

],

 "links": [

 {

 "source": "Chat",

 "target": "MessageDatabase",

 "properties": {

 "calls": "2"

 }

 },

],

 "application_requirements" {

 "response_time": "2000",

 "availability": "0.998",

 "cost": "200",

 "workload": "50"

 }

}

Listing 1: Application model in JSON format

An improvement on the integration of different SeaClouds components from the delivery of

Deliverable 5.1.2 is that the JSON model produced by the wizard is now translated to the

TOSCA YAML read by the Planner component. Therefore, once the application components

have been modeled, the next step in the wizard invokes the AAM Generator. This SeaClouds

module takes the JSON model as input and generates the AAM, specified in TOSCA,

representing the application. The AAM obtained from the webchat JSON model is shown in

Listing 2.

tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03

description: WebChat application

imports:

- tosca-normative-types:1.0.0.wd03-SNAPSHOT

topology_template:

 node_templates:

 Chat:

 type: sc_req.Chat

 artifacts:

 - war: http://www.seaclouds.eu/artifacts/chat-webApplication.war

 type: tosca.artifacts.File

 requirements:

 - endpoint: MessageDatabase

 MessageDatabase:

 type: sc_req.MessageDatabase

 artifacts:

 - db_create: http://www.seaclouds.eu/artifacts/create-message-database.sql

 type: tosca.artifacts.File

D5.1.3- Final Integrated Platform

18

 properties:

 mysql_version:

 constraints:

 - greater_or_equal: '5.0'

 - less_or_equal: '5.0'

node_types:

 sc_req.Chat:

 derived_from: seaclouds.nodes.webapp.tomcat.TomcatServer

 properties:

 java_support:

 constraints:

 - equal: true

 tomcat_support:

 constraints:

 - equal: true

 java_version:

 constraints:

 - greater_or_equal: '6'

 resource_type:

 constraints:

 - equal: platform

 sc_req.MessageDatabase:

 derived_from: seaclouds.nodes.database.mysql.MySqlNode

 properties:

 disk_size:

 constraints:

 - greater_or_equal: '50'

 resource_type:

 constraints:

 - equal: compute

groups:

 operation_Chat:

 members:

 - Chat

 policies:

 - QoSInfo:

 execution_time: 50 ms

 benchmark_platform: hp_cloud_services.2xl

 - dependencies:

 operation_MessageDatabase: '2'

 - QoSRequirements:

 response_time:

 less_than: 2000.0 ms

 availability:

 greater_than: 0.998

 cost:

 less_or_equal: 200.0 euros_per_month

 workload:

 less_or_equal: 50.0 req_per_min

 operation_MessageDatabase:

 members:

 - MessageDatabase

 policies:

 - QoSInfo:

 execution_time: 30 ms

 benchmark_platform: hp_cloud_services.2xl

 - dependencies: {}

Listing 2: AAM in TOSCA format

D5.1.3- Final Integrated Platform

19

3.3 From AAM to TOSCA DAM

The AAM is sent to the Planner through the Dashboard. The Planner interacts then with the Discoverer,

which provides a list of Clouds Offerings from service providers with information regarding their

technical characteristics and QoS information. An example of a cloud offering provided by the

Discoverer is as shown below. The actual data in the offering description is intended to be just an

example and currently it is not real information from the cloud providers.

tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03
description:
template_name:
template_version: 1.0.0-SNAPSHOT
template_author:

imports:
 - tosca-normative-types:1.0.0.wd03-SNAPSHOT

topology_template:
 node_templates:
 Microsoft_Azure_Virtual_Machines_G5_us_east:
 type: seaclouds.Nodes.Compute.Microsoft_Azure_Virtual_Machines_G5_us_east
 properties:
 resource_type: compute
 hardwareId: G5
 location: "azure:compute"
 region: "us-east"
 availability: 0.99950
 performance: 537 SPECfp
 country: United States
 city: ASHBURN
 cost: 8.69 USD/hour
 local_storage: 6144
 num_disks: 1
 num_cpus: 32
 ram: 448
 disk_type: ssd

The different components of the planner provide the functionalities required to generate the DAM. In

particular, the Matchmaker is in charge of identifying a list of candidate cloud services for each of the

abstract services defined in the AAM. Particularly, it returns a map of <abstract service, list of cloud

offerings> where each of the cloud offerings in the list satisfies the technical requirements of the

abstract service defined in the AAM.

The AAM and the list of candidate cloud services for each module is passed to the Optimizer. This

module creates ADP models, where in each ADP model, each of the application modules in the AAM is

associated with one of its candidate cloud offers. The association of application modules with cloud

offers intends to satisfy performance, availability and cost QoS requirements of the application;

therefore it requires inputs of the performance, availability and cost of each candidate cloud offer. The

selection of the candidate offer is expressed in the ADP in terms of a node_template with a type

that corresponds to the specific cloud service and a set of properties that describe the offering. The

D5.1.3- Final Integrated Platform

20

following listing shows an example of ADP. See, for instance, the new Amazon_EC2_i2_xlarge_ap_china_1

node template that provides the host specification of MessageDatabase node template.

tosca_definitions_version: tosca_simple_yaml_1_0_0_wd03

description: WebChat application

imports:

- tosca-normative-types:1.0.0.wd03-SNAPSHOT

topology_template:

 node_templates:

 Chat:

 type: sc_req.Chat

 artifacts:

 - war: http://www.seaclouds.eu/artifacts/chat-webApplication.war

 type: tosca.artifacts.File

 requirements:

 - endpoint: MessageDatabase
 - host: pivotal

 MessageDatabase:

 type: sc_req.MessageDatabase

 artifacts:

 - db_create: http://www.seaclouds.eu/artifacts/create-message-database.sql

 type: tosca.artifacts.File

 properties:

 mysql_version:

 constraints:

 - greater_or_equal: '5.0'

 - less_or_equal: '5.0'
 requirements:
 - host: Amazon_EC2_i2_xlarge_ap_china_1

 Amazon_EC2_i2_xlarge_ap_china_1:
 type: seaclouds.Nodes.Compute.Amazon_EC2_i2_xlarge_ap_china_1
 properties:
 resource_type: compute
 hardwareId: i2.xlarge
 location: "aws:ec2"
 region: "ap-china-1"
 performance: 90
 availability: 0.99950
 country: China
 city: BEIJING
 cost: 1.001 USD/hour
 disk_size: 800
 num_disks: 1
 num_cpus: 4
 ram: 30.5
 disk_type: ssd

 pivotal:
 type: seaclouds.nodes.Platform.Pivotal
 properties:
 resource_type: platform
 go_support: true
 java_support: true
 node_support: true
 php_support: true
 python_support: true
 ruby_support: true
 mysql_support: true
 postgresql_support: true
 mongoDB_support: true

D5.1.3- Final Integrated Platform

21

 redis_support: true
 riak_support: true
 dataStax_support: true
 neo4j_support: true
 pivotalHD_support: true
 cost: 0.03 USD_perGB_per_h
 java_version: 7

node_types:

 sc_req.Chat:

 derived_from: seaclouds.nodes.webapp.tomcat.TomcatServer

 properties:

 java_support:

 constraints:

 - equal: true

 tomcat_support:

 constraints:

 - equal: true

 java_version:

 constraints:

 - greater_or_equal: '6'

 resource_type:

 constraints:

 - equal: platform

 sc_req.MessageDatabase:

 derived_from: seaclouds.nodes.database.mysql.MySqlNode

 properties:

 disk_size:

 constraints:

 - greater_or_equal: '50'

 resource_type:

 constraints:

 - equal: compute

groups:

 operation_Chat:

 members:

 - Chat

 policies:

 - QoSInfo:

 execution_time: 50 ms

 benchmark_platform: hp_cloud_services.2xl

 - dependencies:

 operation_MessageDatabase: '2'

 - QoSRequirements:

 response_time:

 less_than: 2000.0 ms

 availability:

 greater_than: 0.998

 cost:

 less_or_equal: 200.0 euros_per_month

 workload:

 less_or_equal: 50.0 req_per_min
 - ExpectedQuality: {expectedWorkload: 50.0, expectedAvailability: 0.9994997551225, expectedCost:

190.8, expectedExecutionTime: 0.10079721294968995}

 operation_MessageDatabase:

 members:

 - MessageDatabase

 policies:

 - QoSInfo:

D5.1.3- Final Integrated Platform

22

 execution_time: 30 ms

 benchmark_platform: hp_cloud_services.2xl

 - dependencies: {}

Listing 3: ADP in TOSCA format

The list of ADPs is sent back to the user who selects the most suitable deployment plan to her

interests. The selected ADP is sent again to the Planner, in particular, to the DAM Generator

module. The DAM Generator augments the information specified in the ADP and generates a

Deployable Application Model (DAM). Thus, the DAM contains the information needed by the

SeaClouds Deployer to deploy, configure and execute the application. In particular:

- Monitoring rules

- Service Level Agreements

- Credentials

This information is added by different services orchestrated by the DAM Generator. In

particular the monitoring rules are generated by a service invocation to the new Monitoring

rules generator module in the Monitor component (module previously described in Section 2).

The SLA is generated by the SLA generator module in the SLA service component. Next

subsection details the generation of monitoring rules and SLA. Both of them will be XML

documents. At present, these documents are attached to the DAM and we are under

development of more appropriate solutions, for example, upload the monitoring rules and SLA

documents to a document server and include in the DAM only the URLs of their location.

3.4 Definition of Monitoring Rules and SLA

This subsection details the generation of the information to be included in the DAM and related

to the observation of the application behavior. This information is composed of the monitoring

rules, deployment scripts of data collectors and the SLA.

The Monitoring Rules Generator module, which is part of the SeaClouds Monitor component,

executes as main tasks the generation of monitoring rules and the deployment scripts for data

collectors. These two tasks are interrelated because the monitoring rules are based on the

metrics specified in the deployment scripts of the data collectors.

The Monitoring Rules Generator generates by default a couple of monitoring rules for

infrastructural level monitoring (achieved exploiting the Sigar12 based data collector). In

particular monitoring rules for RAM and CPU usage of each application module will be

generated by default. Also default application level monitoring is provided exploiting

12

 http://sigar.hyperic.com/

D5.1.3- Final Integrated Platform

23

application level data collectors to measure properties such as the application response time or

its throughput. This feature is provided for Java applications customized with java-app-dc13,

available within the Tower4Clouds14 framework. Non Java applications can bring their own data

collector to feed the system with application level metrics. In this case the Monitoring Rules

Generator also needs to be customized with an additional module to generate specific rules

and deployment script for the custom data collector.

The described set of rules is mainly devoted to metrics visualization. A second set of rules

enabling the monitoring of the SLAs violations is then generated based on the QoS

requirements specified in the ADP.

Summarizing the Monitoring Rules Generator will output:

1) A set of monitoring rules for the SLA contracting process derived from the QoS requirement

specified in the ADP.

2) A second set of rules for infrastructural level monitoring (RAM and CPU usage) for each

application module when the deployment is performed in IaaS.

3) If it is a Java application equipped with the java-app-dc, it is also provided a third set of

monitoring rules for application level monitoring.

4) Deployment script for infrastructural level Data Collector to be attached to every application

module

Listing 4 reports the three monitoring rules generated for Chat module of the example

application.

<monitoringRules>
 <monitoringRule id="respTimeRule_Chat" timeStep="10" timeWindow="10">
 <monitoredTargets>
 <monitoredTarget type="Chat" class="InternalComponent"/>
 </monitoredTargets>
 <collectedMetric metricName="AvarageResponseTimeInternalComponent"/>
 <actions>
 <action name="OutputMetric">
 <parameter name="metric">AvarageResponseTime_Chat</parameter>
 <parameter name="value">METRIC</parameter>
 <parameter name="resourceId">ID</parameter>
 </action>
 </actions>
 </monitoringRule>

 <monitoringRule id="respTimeSLARule_Chat" timeStep="10" timeWindow="10">
 <monitoredTargets>

13

 https://github.com/deib-polimi/tower4clouds/tree/master/data-collectors/java-app-dc
14

 https://github.com/deib-polimi/tower4clouds

D5.1.3- Final Integrated Platform

24

 <monitoredTarget type="Chat" class="InternalComponent"/>
 </monitoredTargets>
 <collectedMetric metricName="AvarageResponseTimeInternalComponent"/>
 <condition>METRIC > 2000.0</condition>
 <actions>
 <action name="OutputMetric">
 <parametername="metric">
 AvarageResponseTime_Chat_Violation
 </parameter>
 <parameter name="value">METRIC</parameter>
 <parameter name="resourceId">ID</parameter>
 </action>
 </actions>
 </monitoringRule>

 <monitoringRule id="vmAvailableSLARule_Chat" timeStep="2" timeWindow="2">
 <monitoredTargets>
 <monitoredTarget type="Chat" class="InternalComponent"/>
 </monitoredTargets>
 <collectedMetric metricName="AppAvailable"/>
 <metricAggregation groupingClass="InternalComponent" aggregateFunction="Average"/>
 <condition>METRIC < 0.998</condition>
 <actions>
 <action name="OutputMetric">
 <parameter name="metric">
 AvarageAppAvailability_Chat_Violation
 </parameter>
 <parameter name="value">METRIC</parameter>
 <parameter name="resourceId">ID</parameter>
 </action>
 </actions>
 </monitoringRule>
</monitoringRules>

Listing 4: monitoring rules for Chat module of the WebChat application

The first monitoring rule, which has respTimeRule_Chat as ID, belongs to the third set of

generated metrics in the previous list. In turn, second and third monitoring rules, which have

respTimeSLARule_Chat and vmAvailableSLARule_Chat as IDs respectively, belong

to the first set of metrics and are generated because the application has availability and

response time requirements.

After the monitoring rules have been generated, the next step in the production of the DAM

document is the generation of the SLA. In this step, the SLA Generator module generates an

SLA agreement to be assessed by the SLA Service. The generated agreement (refer to WS-

Agreement [7] specification or deliverable D4.4 [8]) contains guarantee terms associated to the

expressed application level constraints, namely application response time and availability. If

there were specified actions to be applied in case of violations on these terms, they will be also

present in the business part of the respective guarantee terms.

D5.1.3- Final Integrated Platform

25

The SLA Service depends on the Monitor component to detect violations of the QoS.

Concretely, it relies on the first set of generated monitoring rules mentioned above.

The generated agreement is an XML document following WS-Agreement specification. The

agreement for the example application is shown in Listing 5. See that the SLA Genarator reads

the collected metric names AvarageResponseTimeInternalComponent and

AppAvailable assigned in the monitoring rules and uses them as names of their

wsag:Variable. It also reads from the monitoring rules the action parameters when these

metrics are violated (AvarageResponseTime_Chat_Violation and

AvarageAppAvailability_Chat_Violation in the monitoring rules example) to use

them as CustomServiceLevel in the guaranteed terms of the SLA.

<wsag:Agreement xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement">
 <wsag:Name>AAM for SeaClouds Demo V2.0</wsag:Name>
 <wsag:Context>
 <wsag:AgreementInitiator>client</wsag:AgreementInitiator>
 <wsag:AgreementResponder>seaclouds</wsag:AgreementResponder>
 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
 <sla:Service xmlns:sla="http://sla.atos.eu">service</sla:Service>
 </wsag:Context>
 <wsag:Terms>
 <wsag:All>
 <wsag:ServiceProperties wsag:Name="NonFunctional" wsag:ServiceName="default">
 <wsag:VariableSet>
 <wsag:Variable wsag:Name="AvarageResponseTimeInternalComponent" wsag:Metric="xs:double">
 <wsag:Location></wsag:Location>
 </wsag:Variable>
 <wsag:Variable wsag:Name="AppAvailable" wsag:Metric="xs:double">
 <wsag:Location></wsag:Location>
 </wsag:Variable>
 </wsag:VariableSet>
 </wsag:ServiceProperties>
 <wsag:GuaranteeTerm wsag:Name="ApplicationResponseTime">
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>ResponseTime</wsag:KPIName>
 <wsag:CustomServiceLevel>{"constraint": "AvarageResponseTime_Chat_Violation", "qos" :

"AvarageResponseTimeInternalComponent LE 2000"}</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 </wsag:GuaranteeTerm>
 <wsag:GuaranteeTerm wsag:Name="ApplicationAvailability">
 <wsag:ServiceLevelObjective>
 <wsag:KPITarget>
 <wsag:KPIName>AppAvailable</wsag:KPIName>
 <wsag:CustomServiceLevel>{"constraint": "AvarageAppAvailability_Chat_Violation", "qos" :

"AppAvailable GE 0.998"}</wsag:CustomServiceLevel>
 </wsag:KPITarget>
 </wsag:ServiceLevelObjective>
 </wsag:GuaranteeTerm>
 </wsag:All>
 </wsag:Terms>
</wsag:Agreement>

Listing 5: Generated SLA document for the WebChat application

D5.1.3- Final Integrated Platform

26

3.5 Deployment on IaaS/PaaS

Once the design phases have been completed and the DAM is generated, this DAM document

will contain the necessary information for executing the deployment. Target providers are

identified by the different locations assigned in the DAM to each module of the application.

Thanks to the homogeneity provided by the Deployer component, a mixed or multi-cloud

deployment can be achieved for the target application, assigning different locations to each of

its modules. SeaClouds Deployer will process the DAM and execute the deployment for each of

the modules.

SeaClouds Deployer component provides support for deploying on both IaaS and PaaS cloud

providers. Capabilities for IaaS deployment were provided natively by the SeaClouds deployer

engine on most providers by means of jClouds15 used for Brooklyn. We have integrated in the

deployer engine the capabilities for PaaS deployments as well. In this sense, currently

SeaClouds integrates CloudFoundry16 as the main PaaS provider, supporting several kinds of

application modules and services. An initial support for Openshift17 is also provided, as a proof

of concept that needs to be extended. Moreover, current version of Seaclouds Deployer is also

able to deploy PHP applications, which was a feature not supported previously by Brooklyn.

Following the sample application, a possible outcome of the design and planning process could

be a mixed deployment where the Chat module is assigned to be deployed on a PaaS

provider, like CloudFoundry, whereas the MessageDatabase will be targeting an IaaS

service, such as Amazon EC2.

Figure 7 shows a screenshot of the Dashboard. This window of the Dashboard illustrates an

overall summary of the deployment process, where the user can check the status of each of the

individual tasks. If the report is successful, the user will find the deployed application listed as

available for being managed.

15

 https://jclouds.apache.org
16

 https://www.cloudfoundry.org
17

 https://www.openshift.com

https://jclouds.apache.org/

D5.1.3- Final Integrated Platform

27

Figure 7: SeaClouds Deployer - Deployment process and summary

During the deployment process, SeaClouds will prepare the application to be monitored and to

analyse the QoS and requirements are not violated. Thus, in order to achieve monitoring tasks,

the Deployer needs to attach specific data collectors, that will be deployed along each of the

application modules. These agents will perform the collection of metrics on the target cloud

providers.

Brooklyn will take care of the application repairing by means of autoscaling policies based on

the modules response time. Brooklyn provides by default this kind of autoscaling policy for the

DynamicControlledWebAppCluster entity, which also provides a load balancing service. The

monitoring system does not take part in the repairing process, but instead it does in the SLA

enforcement and in the replanning processes. In particular, as presented in Section 3.5, a

monitoring rule for each QoS requirement is generated by the Monitoring Rules Generator.

Concerning the replanning a first considered scenario is to replan when an application is “ON

FIRE” (terminology used by Brooklyn to indicate a undesirable status of the application and lack

of internal actions to repair it). In this case, the Dashboard is notified and the replan() endpoint

exposed by the Planner is called. This endpoint receives the current DAM of the deployed

application and additional diagnostic information regarding the cloud provider that is failing.

This additional information will let the Planner avoid choosing this provider again for the next

deployment. To this aim a specific data collector named reconfiguration-data-

collector continously asks the Deployer for the application status and if this is “ON FIRE”

the Dashboard is notified and the replanning is triggered.

D5.1.3- Final Integrated Platform

28

Next section gives more details related to the Monitor and SLA components.

3.6 Execution, visualization of monitoring data, autoscaling

In order to visualize the application status, the user of SeaClouds can choose among two

monitoring engines:

● Brooklyn built-in monitoring platform: SeaClouds will be able to retrieve information as

fallback reading directly from Brooklyn Sensors. This system works based on existing

monitoring mechanisms on the hosts, like JMX18. Figure 8 presents the graphs that can

be obtained through this approach. Specifically, for our example, it shows the case

when latency of the application is too high and the application performance is lower

than the defined limits. Then, the policy modifies the assigned resource to the

application.

● Tower4Clouds + Graphite & Grafana19: This approach uses Tower4Clouds data-

collectors (from the MODAClouds20 project) to retrieve monitoring information based

on monitoring rules. The data collectors push the information into Tower4Clouds where

Graphite registers as an observer and can display data through its interface of pass

them to Grafana. For instance, Figure 9 shows this second type of data presentation.

We can see a visualization of the “Average RAM Usage” evolution over the last 15

minutes of the virtual machine where the MessageDatabase module of the

example application is running.

While an application is running and it is being monitored, SeaClouds Monitor can detect

incidents in its behaviour - for example, any SLA or monitoring rule violations - and respond to

this event in a reactive way. Besides, when an unexpected drop in performance is detected in

any application module, Brooklyn can react to this event and scale the clouds resources which

are bound to the application according to the application requirements.

Thus, in our example, once the Chat module of the example application is running in a cloud

provider and the data collectors send the application status to the SeaClouds Monitor, this

calculates the performance of the application and the target cloud provider. If any issue is

found SeaClouds Deployer will try to rescale the resources assigned to the application using the

mechanisms defined by Brooklyn.

18

 http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
19

 http://docs.grafana.org/datasources/graphite/
20

 http://www.modaclouds.eu

D5.1.3- Final Integrated Platform

29

Figure 8: Legacy monitoring view with autoscaling status

Figure 9: Tower4Clouds + Graphite + Grafana monitoring platform

Finally, Figure 10 depicts the SLA viewer where the user can keep track of the status of the

defined SLA’s. A complete registry of SLA violations is listed here, allowing the user to stay alert

of repeated misbehaviour from the cloud service providers and, eventually, suggesting a

replanning process in case of repeated violations.

D5.1.3- Final Integrated Platform

30

Figure 10: SLA View showing a violation

4 Conclusions

The SeaClouds Integrated Platform is currently available in the form described in this

deliverable but it will be continuously updated from now till the end of the project, following

the continuous integration approach we have adopted. To reflect such evolution, the current

document will be made available online as a live document and continuously updated in all its

parts.

D5.1.3- Final Integrated Platform

31

References

[1]. SeaClouds Project. Deliverable D3.2. Discovery, design and orchestration functionalities (SeaClouds

Consortium). http://www.seaclouds-project.eu/deliverables/SEACLOUDS-

D3.2%20Discovery_design_and_orchestration_functionalities.pdf . 2015.

[2]. SeaClouds Project. Deliverable D2.4 Final SeaClouds Architecture (SeaClouds Consortium),

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D2.4-Final_SeaClouds_Architecture.pdf

2015.

[3]. SeaClouds Project. Deliverable D5.1.2. Integrated Platform (SeaClouds Consortium).

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D5.1.2-IntegratedPlatform.pdf , 2015.

[4]. Apache brooklyn deployment blueprint

https://brooklyn.incubator.apache.org/v/latest/start/blueprints.htmlhttps://brooklyn.incubator.apa

che.org/v/latest/start/blueprints.html

[5]. Seaclouds Project. Deliverable D5.4.2. Second version of s/w platform (SeaClouds Consortium), To

be published. 2015

[6]. Seaclouds Project. Deliverable D5.3. Implementation of the user interface (SeaClouds Consortium),

To be published. 2015

[7]. Web Services Agreement Specification, http://www.ogf.org/documents/GFD.192, Open Grid Forum,

2011.

[8]. SeaClouds Project. Deliverable D4.4. Dynamic QoS Verification and SLA Management Approach

(SeaClouds Consortium), http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.4-

Dynamic_QoS_verification_and_SLA_management_approach.pdf , 2015.

http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D3.2%20Discovery_design_and_orchestration_functionalities.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D3.2%20Discovery_design_and_orchestration_functionalities.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D2.4-Final_SeaClouds_Architecture.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D5.1.2-IntegratedPlatform.pdf
https://brooklyn.incubator.apache.org/v/latest/start/blueprints.html
https://brooklyn.incubator.apache.org/v/latest/start/blueprints.html
https://brooklyn.incubator.apache.org/v/latest/start/blueprints.html
http://www.ogf.org/documents/GFD.192
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.4-Dynamic_QoS_verification_and_SLA_management_approach.pdf
http://www.seaclouds-project.eu/deliverables/SEACLOUDS-D4.4-Dynamic_QoS_verification_and_SLA_management_approach.pdf

