SeaClLOoOUuUDS

AGILITY AFTer DePLoymenT

Modelling Planning Controlling

SeaClouds Project

D4.5 Unified dashboard and revision

Project Acronym
Project Title

Call identifier

Grant agreement no.

Start Date
Ending Date
Work Package
Deliverable code
Deliverable Title
Nature
Dissemination Level
Due Date:
Submission Date:
Version:

Status

Author(s):

Reviewer(s)

of Cloud API

SeaClouds

Seamless adaptive multioud management of servidesed
applications

FPZICF2012-10

Collaborative Project

1* October 2013

31% March 2016

WP4. SeaClouds rdime environment

D4.5

Unified dashboard and revisiai Cloud API

Report

Public

M18

March 3%, 2015

1.0

Final

Dionysis Athanasopoulos (POLIMI), Miguel Barrientos (UMA), Ji
Carrasco (UMA), Javier Cubo (UMisabetta Di Nitto (POLIMI),
Adrian Nieto (UMA), Marc Oriol (UPI), Diego Pérez (POLIMI), Rc
Sosa (ATOS)

Dionysis Athanasopoulos (POLIMI), Andrea Turli (Cloud3aftter
Cubo (UMA)

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

Dissemination Level

Project cefunded by theEuropean Commission within the Seventh Framework Programi,
PU Public X
PP Restricted to other programme participants (including the Commission

RE Restricted to a group specified by the consortium (including the Commiss

CO | Confidential, only fomembers of the consortium (including the Commissic

Version History

Version

Date

Comments, Changes, Status

Authors, contributors

reviewers

0.1

08/03/15

First ToC

Adrian Nieto, Jose
Carrasco

0.2

09/03/15

Second ToC and assignment o
sections

Javier Cubo, Miguel
Barrientos, Jose
Carrasco

0.3

19/03/15

First contributions

Adrian Nieto, Javier
Cubo, Miguel
Barrientos, Jose
Carrasco, Marc Oriol,
Diego Pérez, Roman
Sosa, Dionysis
Athanasopoulos

0.4

20/03/15

Internal revision to check missit
contributions

Adrian Nieto

0.5

26/03/15

New contributions and last
checkings

Adrian Nieto, Jose
Carrasco, Miguel
Barrientos, Roman Sos
Javier Cubo, Leonardo
Bartoloni, Simone
Zenzaro, Diego Pérez,
Marc Oriol

0.6

27/03/15

Ready to be reviewed

AdrianNieto, Jose
Carrasco, Miguel
Barrientos, Javier Cubg
Marc Oriol

0.7

30/03/15

Revised version

Andrea Turli, Roman
Sosa, Javier Cubo

1.0

31/03/15

Final version

Adrian Nietg Miguel
Barrientos

seacLoubDs . .
AGILITY AFTEr DEPLOUMENT D4.5 Unified Dashboard and revision of Cloud i

Modelling Planning Controling

Table of Contents

EXECULIVESUMIMIGIY.....eeiiiiiiieeiei ittt e e e e e e e e e e 6
IR 11 Yo [T 1T o PP PURPRRRRRY 4
1.1. Structure of this dOCUMENT.........ccoiiiiiiiiiiiiiiieee e]
1.2. Glossary of ACTONYMIS......ccoeeeiieiiiiiie e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnnn
2. SEACIOUAS ARN....oiiiiiiii i 8
2.1. TeChNICAl OVEIVIEW.......uuiiiiiiiiiie ettt 8
2.2. DISCOVEIEr AR . 9
2.2.1. TeIMINOIOGYcci ittt 9
A 1 1= - o = 10

P2 T o T o1 =T N P 11
2.3.1. TerminOIOQY.......cceee e 11
2.3.2. INTEITACE......ci it 12
2.3.3. MatChM@AKEL ... 14
2.3.4. OPUIMIZELt e e e e eeaeeeas 14
2.4. DEPIOYEr AR ... 16
2.4. 1. TeIMINOIOGY .. cci i ittt e e 16
A 1 1 (=] - o = 17
2.5, MONITOE AP ...ttt e e e e e e e e e e e e e nnnnes 19
2.5. 1. TermMinNOIOQY.......cceei e 20
2.5.2. INEITACE.uuiiiiiii e 20
2.6. SLA SEIVICE APL....ouiiiiiiiiiiii et 22
2.6.1. TeIrMINOIOGY . .ccciiiiiiiiiiee it 22
A 1 1 (= - o = 23

3. SeaClouds Dashboard...............coooriiiiiiii s 27
3.1. TECHNICAl OVEIVIEW......ceveeveeeieeeieeiieeieeie e e e e e 27
3.2. Design and USer EXPEIENCE.iiiieeeiieiiiieee e e e e e e e e e e et eeeaeeenns 27
3.2 1. MAIN VIBW....ceiiieeei e 28
3.2.2. STALUS VIBWL. ..ot 29
3.2.3. SeaClouds ASSISTANLS.o 29
G2 W |V [) (o] gt =T=Tox 1 o s 1A P 36
G ST | I N o o | o 37
3.3. Nuro Storyboard as use example of the API and Dashboard................ 39
A, CONCIUSIONS ..ottt eeaaaens 39

D REIBIENCES. ... e A0

seacLoubDs . .
AGILITY AFTEr DEPLOUMENT D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

Table ofFigures

Figure 1. SeaClouds unified API INtEraction..........ccceeevviiiiiiiiiiiiiiiiieeeee e 9
Figue 2. Dashboard interaction diagram...................eevuverremmnimmmmn 27
Figure 3. SeaClouds MaiN VIBW...........ouiiiiiiiiiiiiiiiee e 28
Figure 4. SeaClouds StAtUS VIBW.............uuurrrriiriueeiiiiiiiiisssss s eee e e e e e e e e aeaeeas 29
Figure 5. Add a new application wizard, step.L........cccccceriiiiiiiiiiiiiiiiiieeeeeee 30
Figure 6. Design an application topology, Step.2...........cevvveevverveerreirineininnnnnnnns 31
Figure 7. Configuring an application module, Step.2..........ccccvvevvvieeeiiniiiiiinnee. 31
Figure 8. Designing the application topology, step 2. Sequence diagram........ 32
Figure 9. Optimized plan seledliostep 3.........ccoooeiieiiiiiiie, 32
Figure 10. Configuration summary, SteR.4.......ccooviiiiiiiiiiiieiieeeee e 33
Figure 11. Generation and deployment of a DAM. Sequence diagram............ 33
Figure 12. Selecting the apglton which will be removed, step.l................... 34
Figure 13. Removal operation confirmation, step.2................cccceevvviviiiveeennne, 35
Figure 14. Remove process summary, StER.3.......cueiiiiirriiiiiiiiiiieieeee e 35
Figure 15. Remove application wizard. Sequence diagra...................ccceeeeee. 36
Figure 16. ApPliCation MONITOL........uuuiiiiiiiiee e e 36
Figure 17. Dashboapplication monitoring ProCess.ccceeeveveeieeeiiieeeeeeeeeeenn. 37
Figure 18. SLA usage and status SUMMAIIZE..........c.evveeiiiimmeeeeeiiiiieeeeeereeeeens 38

Figure 19. Interaction between the Dashboard and the SLA.ARI..................... 38

4

seacLoubDs
AGILITY AFTEr DePLOYMENT
Modeling Planning Centfroling

Table ofTables

Table 1. Acronyms

Table 2. API method definition template

seacLoubDs . .
AGILITY AFTEr DEPLOUMENT D4.5 Unified Dashboard and revision of Cloud_

Modeling Planning Confroling

Executive Summary

This document presents a revisited version of the SeaClouds Unified Application
Programming Interface (API) and the Dashboard, based on the exposed work on the
previousDeliverable D4.2. It describes the common language that every SeaClouds
component will use to interact between each other. Also, it exposes the advances
on the Dashboard design, where we simplify the user interaction by the usage of
SeaClouds Assistantghich will guide the user during the usage of the Dashboard.
Finally, it includes an example based on the Nuro Storyboard that we introduced in
Deliverable D2.4 in order to show a real example of usage of the Dashboard and
SeaClouds API.

seacLoubDs . .
AGILITY AFTEr DEPLOUMENT D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

1. Introduction

This document describes the design of the unified SeaClouds API, which allows to
develop and use the different SeaClouds components in an isolate way in order to
facilitate the reusability and modularity. Thus, the API provides the necessary
mechanisms to exgse and use the functionalities of each component.

Therefore, we describe the expected Dashboard functionalities providing a usable
mockup, related to the higiidelity prototype described in the Deliverable D5.2.2
FinalDesignof the User Interfac¢l] . This tool works as a SeaClouds API client and
it implements an environment to use the SeaClouds functionalities using all the
operations performed by the SeaClouds components thatpsoxided bythe API.

The dashboard inherits the |Heycle to deploy ath manage the applications on the
target locationausing theSeaClouds platform.

1.1. Structure of this document

The structure of this document is the following.

Section 2 provides a specification of the technology aspect of the Sea@Budsd

an exhaustive description of the performed operations by each SeaClouds
component.

In Section 3, we present the SeaClouds Dashboard starting, again, with the technical
details and requirements. lorder to describe the design and user experienee
provide a functional mockup of the user interface.

Section 4 briefly illustrates the platform functionalitissing theNuro Use Case to
show how the dashboard use the SeaClouds components API and how they interact
with each other.

Finally, Section presents some conclusions fiiris document

1.2. Glossary of Acronyms

Here we list the different acronyms which will be used in this document.

Acronym Definition

SaaS Softwareasa-Service

PaaS Platformasa-Service

laaS Infrastructureasa-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

GUI Graphical User Interface

API Application Programming Interface
APP Application

e D4.5 Unified Dashboard and revision of Cloud_
AAM Abstract Application Model
DAM Deployable Application Model
ADP Abstract Deployment Plan
RDF Resource Description Framework
URI Uniform Resource Identifier
MVC Model View Controller
YAML lal TAYQdO al N} dzLd [y3dz 3S
XML eXtensible Markup Language
REST Representation state transfer

Tablel. Acronyms

2. SeaClouds API

This section describes the different parts that compose the SeaClouds unified API,
by defining the methods that will be available from each of the different SeaClouds
components. The goal of this section is to give a common global interface for the
SeaClods dashboard to execute the primary objectives of the platform, such as
designing, managing and-o®nfiguring applications.

In Table 2, we present the template usedh this document to describe the
SeaClouds API corresponding to each component of the platform: Discoverer,
Planner, Deployer, Monitor and SLA Service.

Basically, we are considering a Method identification, and provide a Description of
the method. Alsothe Parameters of the method are listed, as well as the Response
of the method.

ID MethodID (e.g: getApplications)

Description| (e.g returns a list of applications

Parameters (Type) Paramja description of Param1
(Type) Parama description oParaml

Response (Type) MethodResponse description of the response

Table2. APl method definition template

2.1. Technical overview

From a technical point of view, SeaCloudsfied API will be accessible from a
single endpoint, and it will be internally organized in the same way that SeaClouds
components are designed. In other words, each SeaClouds component (Discoverer,
Planner- including the Matchmaker and Optimizer preses-, Deployer, Monitor,

SLA Service) will implement its own REST API, all being gathered under the same
REST hierarchiigurel).

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

D4.5 Unified Dashboard and revision of Cloud_

Modelling Planning Controling

From a developer point of viewhe usage of the API is homogeneous and
transparent to the component implementation as the developer only has to
concern about the external details of the SeaClouds Platform, which are defined in
this deliverable.

Dashboard

SeaClouds REST API

P T T T T .
']
'
|
|

API API API APl API
/ Planner &
Discoverer Deployer Monitor SLA Service
API API
Matchmaker| | Optimizer

Figurel. SeaClouds unified API interaction

2.2.Discoverer API

The Discoverer is composed of several pluggable modules and a core Information
system. The core information system stores the different cloud offerings and their
properties in TOSCA YAML standard. Thanmdtion is obtained by the different
modules, which follow different strategies and have different capabilities according
to the strategy.

2.2.1. Terminology

TOSCA document document in TOSCA formagither as a string or file or
as a parsed Java object regentation.

CloudOfferingDocumenta TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in Deliverable D32].

CloudOfferingID the name of a TOSCA node type referrimg a cloud
offering, expressed as a string.

CloudOfferingEnumeratar the head of a linked list of
CloudOfferingDocument representing the offers in the database. It has two
methods: get() to retrieve the CloudOfferingDocument currently being pointed and
next)) to get a CloudOfferingEnumerator pointing to the next element in the
enumeration. next() will return NULL if the element being pointed is the last
element of the enumeration.

https://drive.draw.io/#G0Bw9KJPN8k2gldTlJSmpMUlRlZ0E

SSackoeubs D4.5 Unified Dashboard and revision of Cloud Fe)

Modelling Planning Controlling

2.2.2.Interface

The Discoverer provides the following API:
- Add/remove cloud offerig: adds/removes a cloud offering of the core
information system (used by the modules of the discoverer)
- Update cloud offering properties: updates the properties of the cloud offering
(used by the modules of discoverer)
- Enumerate cloud offerings: allows iiggion of the cloud offerings and their
properties from the information system. (used by the matchmaker)

ID update

Description| Adds or replace a list of cloud offering to the discoverer datab
Used by discoverer modules.

Parameters (CloudOfferingDocument) cloudOfferinga set of cloud
offerings to be included into the database.

(Boolean) overwrite if true cloud offerings with the same
name will be updated, otherwise the update will fail if an offerin
with the same name is specified

Response (Boolean) Successtrue if the database was updatg
successfully.

ID getDefinition

Description| Get the definition of a cloud offering given its identifier.

Parameters (CloudOfferingld) cloudOfferingldhe unique id of the
cloud offeringwhose definition is to be

Response (CloudOfferingDocument) cloudOffering TOSCA
document containing the node type definition corresponding to
the required cloud offering ID. If no cloud offering exists for the
given ID NULL is returned

ID removeOffer

Description| Removes a cloud offering from the database

Parameters (CloudOfferingld) cloudOfferingldthe unique id of
the cloud offering to be removed

Response (Boolean) Successtrue if the cloud offering wa
found and correctly removed

seacLoubs . .
AGILITY AFTEr DEPLOMENT D4.5 Unified Dashboard and revision of Cloud
Modelling Planning Controling
ID enumerateOffers

Description| Get an enumerator pointing to the first cloud offering. Used by
matchmaker to enumerate all the available offerings and feg
them one at a time.

Parameters

Response (CloudOfferingEnumerator) enumeratorthe head of ¢
linked list of the offers in the database.

The different modules of the Discoverer provide different APIls depending on their
nature. Examples of modules of the discoverer are:
- Brokering crawlers (e.g. CloudHarmony, PaaSify): providégato start the
interaction with CloudHarmony, PaaSify.
- { SNOBAOS t NPOARSNID& ROSNIAaAaSYSylday LINRC
to advertise directly their services to SeaClouds.
- Monitored information module: provides an APl to be notified of QoS
information of the cloud offerings
- Manual input module: provides an API to manually include cloud offering

2.3. Planner API

In this section we describe the available methods that are offered from the Planner
API for example obtaining the best plan deploym@atan application or plan a fe
planification.

2.3.1. Terminology

TOSCA document document in TOSCA formagither as a string or file or
as a parsed Java object representation.

AAM: a TOSCA document containing the Abstract Application Model as
described in ther deliverableg2*].

ADP a TOSCA document containing the Abstract Deployment Model, which
is similar to the Abstract Application Model but it has cloud offerings associated with
executable modulef2*].

DAM: a TOSCA document containing the DeploymApplication Model,
which is similar to the Abstract Deployment Plan but it is augmented with the
required information to perform the deployment.

LiveModet a TOSCA document containing topology, deployment, and
runtime information of a running application.

SSackoeubs D4.5 Unified Dashboard and revision of Cloud S

Modelling Planning Controlling

2.3.2.Interface

ID plan

Description| Implements the process of requiring application planning. G
the Abstract Application Model as TOSCA YAML input, the plz
performs matchmaking and optimization by invoking the meth
match and optimize respectivelfthe output of this process is
set of optimized deployment proposal for the given application

Parameters (AAM) mode| the Abstract Application Model for whig
planning is required

Response (Set<ADP>) deploymentModels set of optimized
deployment promsal models

ID match

Description| The planner offers to the user the option of performi
matchmaking (i.e only the first step of the planning process).
method invokes the internal component Matchmaker, wh
implements the functionality.

Parameters (AAM) mode| the Abstract Application Model in TOS
YAML for which matchmaking is required

Response (Map<ModuleName, CloudOfferingDocument>)
matchingOffers a map associating a set of possible cloud offeri
to e each module in the input Abistct Application Model.

ID optimize

Description| The planner offers to the user the option of performi
optimization (i.e. only the second step of the planning proceg
This method, invokes the internal component Optimizer, wh
implements the functionality.

Parameters (AAM) mode| Abstract Applicabn Model in TOSCA YAN
that contains the information of application modules, applicat
topology, QoS requirements, QoS properties and names of (
services that can be used for each module in an AAM
(Map<ModuleName, CloudOfferingDocument>)
suitableQoudOffers a map from the Abstract Application Model
modules to the set of matching cloud offers containing the
information retrieved by the Discoverer module of suitable clou
services and information regarding communication capabilities

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modelling Planning Controlling

clouds

Respamse

(Set<ADP>) candidatePartialPlarthe output is an set ¢
candidate partial plans where, in each plan, each modul
associated to one and only one cloud service. The inte
optimization problem aims at satisfying the performance anc
availabilty requirements while minimizing the expected expen
on using computing cloud resources assuming that they are us
I d-asyor32¢ aSGladAy3aA

ID

generateDAM

Description

Generates the Deployment Application Model from the Abst
Deployment Plan. To do so, it interacts with the user to ob
additional information regarding credentials,policies, etc. tha
required to perform the deployment.

Parameters

(ADP) deploymetModel, the Abstract Deployment Plan
TOSCA YAML.

Response

(DAM) deploymentMode]l The Deployable Applicatid
Model in TOSCA YAML with the required information to perf
the deployment.

ID

replan

Description

Implements the replanningphase for a running application. T
Planner takes the Abstract Application Model and the current
Model for the user application. The Live Model provides also
information about replanning cause. The output of this proceg
a set of optimized daloyment proposal for the given application

Parameters

(AAM) abstractMode] the Abstract Application Model i
TOSCA YAML for which replanning is required

(LiveModel) liveMode] the current Live Model containin
also the informations about violations amelplanning causes

Response

(Set<ADP>) deploymentProposaks set of optimized
deployment proposal models

D4.5 Unified Dashboard and revision of Cloud

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

2.3.3. Matchmaker

The Matchmaker iterates the list of available cloud offerings from the Discoverer
and selects those whichre suitable to implement the modules of the application
given the requisites from the user.

2.3.3.1.Terminology

TOSCA documentn document in TOSCA formatither as a string or file or
as a parsed Java object representation

AAM: a TOSCA document containingeti\bstract Application Model as
described in D3.2

Module: the smallest deployable entity of the application, described in TOSCA
by a Node Template (see D3.2)

ModuleName the unique name of the node template used to specify a
module in the AAM

CloudOfferindpocument a TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in D3.2

2.3.3.2.Interface

ID match

Description| Implements the matching process. Given the Abstract Applice
Model for the application, each module is matched with availg
cloud offers according to its functional properties. The mapy
between modules and matching offers is returned.

Parameters (AAM) mode| the Abstract Application Model in TOS
YAML for whiclmatchmaking is required

Response (Map<ModuleName, CloudOfferingDocument>)
matchingOffers a map associating a set of possible cloud offeri
to each module in the input Abstract Application Model.

2.3.4.0Optimizer

The Optimizer module within the planner msainly composed of an optimization
problem solving[1] component. It provides interfaces for two different problems: a)
deciding the cloud services to use in the initial deployment (calf#tnize and b)
deciding the cloud services to use in subsequemtlogments when the application
has to migrate, at least partially, from its original deployment (cakexbtimizg.

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controlling

2.3.4.1.Terminology

TOSCA documentn document in TOSCA formatither as a string or file or
as a parsed Java object representation

AAM: a TOSCA document containing the Abstract Application Model as
described in other deliverables.

Module: the smallest deployable entity of the application, described in TOSCA
by a Node Templat*].

ModuleName the unique name of the node template used $pecify a
module in the AAM

CloudOfferingDocument a TOSCA document containing one or more node
type definitions corresponding to cloud offerings. The format for this document is
described in Deliverable 3[2*]

ADP. a TOSCA document containing thestAdict Deployment Model, which
is similar to the Abstract Application Model but it has cloud offerings associated with
executable modulef2*]

LiveModet a TOSCA document containing topology, deployment, and
runtime information of a running application

2.3.4.2.Interface

ID optimize

Description| It produces a set of candidate partial plans where, in each f
each module is associated to one and only one cloud service.

Parameters (AAM) mode| Abstract Application Model in TOSCA YA
that contains the information of application modules, applicat
topology, QoS requirements, QoS properties and names of ¢
services that can besed for each module in an AAM.

(Map<ModuleName, CloudOfferingDocument>)
suitableCloudOffers a map from the Astract Application Model
modules to the set of matching cloud offers containihg
information retrieved by the Discoverer module of suitable clou
services and information regarding communication capabilities
clouds

Response (Set<ADP>) candidateR&lPlans the output is an set ¢
candidate partial plans where, in each plan, each modul
associated to one and only one cloud service. The inte
optimization problem aims at satisfying the performance anc
availability requirements while mimizing the expected expens
on using computing cloud resources assuming that they are us
I G-adyor32¢ aSGaAy3a

ID reOptimize

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controlling

Description| It produces a set of candidate partial reconfiguration plans wk
each plan specifies the modules naigrate and their target clou
service

Parameters (AAM) mode| Abstract Application Model in TOSCA YA
that contains the information of application modules, applicat
topology, QoS requirements, Qgfsoperties and names of cloy
services that can be used for each module in an AAM

(Map<ModuleName, CloudOfferingDocument
suitableCloudOffers a map from the Abstract Application Mod
modules to the set of matching cloud offers containitige
information retrieved by the Discoverer module of suitable clg
services and information regarding communication capabilitie
clouds

(ADP) oldModel deployment model that was used
deploy the application before replanning triggered.

(LiveModel) liveModel model containing real time
information about the application currently deployed, including 1
violation which triggered the replanning.

Response (Set<ADP>) candidatePartialReconfigurationPlansthe
response is a set of candidate partial reconfiguraatens, where
in each of these candidates it is specified the information
changing from the current DAM that is no longer valid tq
computed alternative deployment that overcomes the currg
DAM problems. The internal optimization problem aims
satisfying the performance and/or availabilitgquirements whilg
minimizing both the expected expenses on using computing
NB&az2dz2NODSa FaadzyaAyda (KI iasyor&KS
settings and the application modules that need to be migrg
from their current deployment.

2.4. Deployer API

The Deployer APl provides the resources to deploy and manage application
modules. It contains the methods for managing the application deployments

2.4.1. Terminology

Application: represents an application whietas deployed by the Deployer.
" ID: unique identifier
Name given name for the application
Status current lifecycle status of the applicationd (G NG Ay 3 € =
Gwdzy YAYIET AahytcFANBEéS G{ (02LILISREZ

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

ConfigParameterdist of configured application parameters
Policieslist of attached policies
Modules modules that compose the application
Effectors operations that can be invoked on application
Module: represents each of the modules that compose an application.
" 1D unique identifier
Name given name fothe module
{GFddzaY OdzZNNByid tAFSOeotS adliddza 27
FTANBZ a{(02LIISReéx SHO0P0L D
ConfigParameterslist of parameters configured on the module. This
includes environment variables, endpointsibeiption, domain, ports, etc.
Policies list of attached policies
Effectors operations that can be invoked on module
Effector. represents the possible actions that can be performed on each
application module.
Action the action that will be performed
Description a description bthe action.
Location represents the cloud provider where the managed application
modules will be deployed.
" Provider.
Region.

2.4.2.Interface

ID getApplication

Description| Returns the details of an existing application (modules, sté
location, etc).

Parameters (String) applicationid 1D of the application.
Response (Application) application found application
ID getModule

Description| Returns the details of an existing application module (sta
location, policies, configuration, etc).

Parameters (String) applicationld: ID of the application.
(String moduleld: 1D of the module.

Response (Module) module: application module details.

ID getApplications

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modeling

Planning Controlling

Description| Returns the list of deployed applications.

Parameters

Response (Application[]) applications: list of available deploye
applications

ID createApplication

Description| Creates and deploys a new application, given a Deploy
Application Model.

Parameters (String deployableApplicationModel application

description

Response (String) applicationid: ID of the created application

ID deleteApplication

Description| Removes a running application, releasing all cloud resou
associated to it.

Parameters (String) applicationid 1D of the application to be removed.

Response

ID getEffectors

Description| Returns the list of available effectors for an Application Module

Parameters (String) applicationid 1D of the application.

(String moduleld: 1D of the module where to retrieve th

effectors.

Response (Effector[]) effectors List of effectors available on tH
module.

ID callEffector

Description| Triggers an effector action associated to a module.

Parameters (String applicationld ID of the application.

(String moduleld: ID of the module that contains the targ
effector.

(String) effector: ID / action to be triggered

(String[]) effectorParameterList additional

parameters

D4.5 Unified Dashboard and revision of Cloud

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controlling

required by the effector.

Response (Application) application found application

ID getSupportedLocations

Description| Retrieves the available locations in the deployer.

Parameters
Response (Location[) locations list of currently supported locations.
ID getAvailablePolicies

Description| Retrieves the available policies that can be attached to ce
kind of module.

Parameters (String moduleType module type

Response (Location[)) locations list of currently supported locations.

2.5. Monitor API

SeaClouds monitoring platform encapsulates and exploits the functionality offered
by MODACIouds monitoring platforrfd]. The latter platform uses four core
components, the Monitoring Manager, the Knowledge Base, the Data Analyzer, and
one or more Data Collectors, as specified below:

The Monitoring Manager is the coordinator of MODACIouds platform.

The Knowledge Base contains an ontology and a permanent RDF database.
The ontology is a formal specification of the common abstractions needed to
represent and monitor cloud applications and to describe the mutual relationships
among them. The permanent RQatabase contains information about the running
system and the current monitoring platform configuration.

A Data Collector is responsible for collecting monitoring data from cloud
resources and applications and to associate semantic information to ttze da

The Data Analyzer processes monitoring data coming from data collectors and
tries to detect onthe-fly patterns that emerge directly from the data, without the
need of major transformations of the data itself.

By using the internal components, Sea@®umonitoring platform offers to the
external SeaClouds components (Deployer, Planner, SLA Service, and Dashboard)
the following overall functionality: it collects raw monitoring data, it offers these
data to Observers interested on them (i.e.: the Deplyand it sends events to the

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

Planner, the SLA service, and the Dashboard in case a set of monitoring rules are
violated. The notion of a monitoring rule has been specified in previous deliesrab

[5]

To realize this functionality, the external Sea@®womponents interact with the
internal components of the monitoring platform. For instance, the Deployer
initiates all the internal components of the monitoring platform, while the Planner,
the SLA service, and the Dashboard subscribe to the Monitorisgalyer in order

to retrieve events.

To reduce the coupling between the external and the internal components of the
monitoring platform, we adopt the mediator design pattern. Based on this pattern,
the interaction between components is encapsulated witmediator component,
which we call here "controller”. In this way, components no longer interact directly
with each other, but instead interact through the controller. In other words, the
controller defines the API for the interaction between the externad ¢éhe internal
components of the monitoring platform.

2.5.1. Terminology

Endpoint URIs of (internal and external) servers with which the Monitor
interact.

MetricName the name of a monitoring metric, which is commonly used
among SeaClouds components (e.g., RéanDeployer), and corresponds to the kind
of the data that will be measured by the Monitor.

DataCollector the executable file (e.g., .jar) of a data collector.

DescrPlanthe lowlevel representation (e.g., String) of the deployment plan
of an applicabn.

Rule the lowlevel representation (e.g., String) of a monitoring rule, according
to the XML schempb].

mID: the identifier of a monitoring rule, as specified in the XML schigha

Callback URI of SeaClouds component that is interested to retrieasg r
monitoring data.

ReplanningEvent the lowlevel representation (e.g., String) of the
information, needed by a SeaClouds component, in order to be informed about
violations of a monitoring rule that lead to a replanning.

2.5.2.Interface

The controller API inatles the methods of the following tables, which prototype
the core functionalities offered by SeaClouds monitoring platform.

ID initialize

Description| It provides URIs of MODACIouds servers and SeaC

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modeling

Planning Controlling

components with which SeaClouds Monitor interact.

Parameters (URI[) endPoints a set of endpoint addresses.

Response

ID getAvailableMetrics

Description| It returns the names of the available metrics, for which d
collectors are available in the SeaClouds monitoring platform.

Parameters

Response (String[]) metricNames a set of available metric names.

ID getDataCollectors

Description| It accepts as input a set of metrics and returns the data colleg
that measure the values of these metrics.

Parameters (String[]) metricNames a set of metricvames.

Response (File[]) dataCollectors a set of executable files of da|
collectors.

ID installDeploymentPlan

Description| It accepts as input the description of the deployment plan for
application and uploads this plan to the Monitoring Manager.

Parameters (String) descrPlan the description of the deployment plg
of an application

Response

ID installMonitoringRules

Description| It accepts as input the monitoring rules for an application, uplo
these rules to the Monitoring Manager, aadtivates them.

Parameters (String) rules, the set of the input monitoring rules.

Response

ID uninstallMonitoringRule

D4.5 Unified Dashboard and revision of Cloud

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modelling Planning Controlling

Description| It accepts as input the id of a previously installed monitoring
and deletes the corresponding rule from tp&atform.

Parameters (Integer)mID, the identifier of a monitoring rule.

Response

ID addObserver

Description| It accepts as input the name of a metric and a callback UR
sends the collected monitoring data for the input metric to t
callback URI.

Parameters (String metricName the name of a metric.

(UR) callback the endpoint address of component that

interested in receiving raw monitoring data.

Response

ID sendReplanningEvent

Description| It accepts as input a fglanning event,producethy the Deployer
and forwards it to SeaClouds components (Planner, SLA Se
and Dashboard) that have subscribed to the violated monito
rule.

Parameters (String replanningEvent the information, needed by
SeaCloudsomponent, in order to be informed about violations
a monitoring rule that lead to a replanning.

Response

2.6. SLA Service API

The SLA Service API provides the methods to manage templates and agreements of

the two SLA levels identified in SeaClouds.

2.6.1. Terminology

Agreement document that describes the delivered service, the involved

parties, and the nofiunctional properties that the service must fulfill.
Agreementld Unique identifier of the agreement.
Template document that describes a provider offékctual agreements may
be based on templates.

D4.5 Unified Dashboard and revision of Cloud

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controlling

Templateld Unique identifier of the template.

Guarantee term Term that express service guarantees in an agreement,
define how guarantees are assessed and which compensation methods apply in case
of meeting orviolating the service guarantees.

Serviceld Identifier of a service being delivered. In the case of Customer
Application Provider level, it corresponds to the application id; otherwise, it
corresponds to an identifier of the actual service offered iy ¢loud provider.

Resource Identifier of the entity using a service. Used in the Application
Provider- Cloud Provider level, corresponding to the moduleld(s) being hosted.

Enforcement Process that evaluate the guarantee terms are being fulfilled.

QoB Quality of Business)express a constraint over businestated metrics
and the penalties and recovery actions that are applied in case this constraint is
violated.

2.6.2.Interface

ID getAgreement

Description| Retrieves the agreement identified by its id

Paraneters (Agreementld) IdWSAgreement Id of agreement
Response (Agreement)WSAgreement representation of agreement
ID getAgreements

Description| Retrieves all the agreements that match the filter

Parameters (Providerld provider, Id of a Provider
(Serviceld service, Id of a Service
(Resourceldiresourceld, Id of a Resource
(Consumerld consumer, Id of a Consumer
(Templateld) templateld WSAgreement template id o
agreements based on this template.

Response (Agreement[])WSAgreement represeration of
agreements matching the filter

ID createAgreement

Description| Creates an agreement for a given application.

Parameters (AAM) aam Abstract Application Model of the application
(DAM) dam Deployable Application Model of the
application

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modeling

Planning Controlling

Response (Agreement[])WSAgreement (including generated

Agreementld) representation of the created agreements:

- 1 agreement in CustomerApplication Provider level

- nagreements in Application Provide€Cloud Provider level,
one per each cloud service used in the plan.

ID updateAgreement

Description| Updates an existing agreement.

Parameters (Agreement) description WSAgreement representation g
the agreement. Itmay be internally modified, so the paramet
should not be taken as the agreement finally stored.

Response (Agreement) WSAgreement representation of th
agreement

ID terminateAgreement

Description| Changes an agreement state to "Terminated" and stepy
enforcement.

Parameters (Agreementld) Id WSAgreement Id of agreement

Response

ID getTemplate

Description| Retrieves the template identified by its.id

Parameters (Templateld) Id WSAgreement Id of template

Response (Template)WSAgreementrepresentation of template

ID getTemplates

Description| Retrieves all the templates that match the filter

Parameters (Providerld) provider, Id of a Provider

(Serviceld) service, Id of a Service
(Template[]) WSAgreement representation of templatg
matching the filter

ID createTemplate

D4.5 Unified Dashboard and revision of Cloud

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modeling

Planning Controlling

Description| Creates a template

Parameters (Template) description WSAgreement representation @
the template. It may be internally modified, so the parame
should not be taken as the template finally stored.

Response (Template) WSAgreement representation of templat
(including generated Templateld)

ID getAgreementStatus

Description| Retrieves the status (violated, not violated) of service I
objectives and the overall agreement

Parameters (Agreementld) Id WSAgreement Id of agreement

Response (AgreementStatus)tatus of agreements and its respecti
guarantee terms.

ID startEnforcement

Description| Starts the enforcement of an agreement

Parameters (Agreementld) Id WSAgreement Id ohgreement

Response (Boolean)status of enforcement

ID stopEnforcement

Description| Stop the enforcement of an agreement

Parameters (Agreementld) Id WSAgreement Id of agreement

Response (Boolean)status of enforcement

ID createProvider

Description| Creates a provider.

Parameters (Provider) description name and description of provider {
create

Response (Provider)SLA Service representation of provider (inclug

generated Providerld)

D4.5 Unified Dashboard and revision of Cloud

SeacLoubDs

AGILITY AFTEIN DePLOYMenT

Modeling

Planning Controlling

ID getQoSViolations
Description| Get a list 0QoS violations that match the filter
Parameters (Agreementld agreementld
(Providerld provider, Id of a Provider
(Serviceld service, Id of a Service
(Resourceldyesourceld, Id of a Resource
(xs:datetime([]) datelnterval if provided, violation musbe
in the interval.
Response (QoSViolation[])Violations matching the filter
ID getQoBViolations
Description| Get a list of QoB violations that match the filter
Parameters (Agreementlg agreementld
(Providerld provider, Id of a Provider
(Serviceld service, Id of a Service
(Resourceldyesourceld, Id of a Resource
(xs:datetime[]) datelnterval if provided, violation must b
in the interval.
Response (QoBViolation[])Violations matching the filter
ID receiveQoSViolation
Description| Notifies the SLA Service a QoS violation.
Parameters (QoSViolation) violationviolation sent by the Monitor
Response
ID receiveHealingNotification
Description| Notifies the SLA Service that the Policy Action was already do
Parameters (Agreementld agreementid

(Policyld policyld
(QoSViolationld violationld

Response

D4.5 Unified Dashboard and revision of Cloud

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modeling Planning Confroling

3. SeaClouds Dashboard

The main goal of the SeaClouds Dashboard is to provide a simple interface to the
application administratorwhere the description in this Delivable ismore focused

on the backend, then considering the internal connections, relateih the user
interface described iDeliverableD5.2.2[1], more focused on th&ont-end.

3.1. Technical overview

The Dashboard is a pure HTML5 + JavaScript application. It uses REST calls to
interact with the SeaClouds PlatforrRigure2). The SeaClouds Dashboard is based

on the Bootstrap library[6], which allows adapting the website to the size of the
screen, providing a nice user experience with independence of the device (mobile,
tablet or traditional desktop). It also uses technologies like Angu[#tXs a client

side MVQo provide all the functionality.

Dashboard

Authentication

SeaClouds
Assistant

Designer
Gul

HTMLS +J3

Public

Intranet

Planner

Matchmaker
Optimizer

‘ Discoverer ‘

Figure2. Dashboard interaction diagram

3.2. Design and user experience

In this section we present the Dashboard user interface which will be employed to
use the services that are provided l§eaClouds. We describe the available
functionalities, like create and configure an application and its jpeshagement.

SSackoeubs D4.5 Unified Dashboard and revision of Cloud

Modelling Planning Controling

An important goal of this section is to specify the interaction among the SeaClouds
components for carrying out the different supportegerations.

In the previous version of the dashboard, in Deliverable [8],2we proposed an
individual usage of the SeaClouds components, as they all were not really
connected. Although the consortium is thinking on the possibility of exploiting
SeaClods functionalities as a whole and also using the components individually
(considering also the exploitation afesigntime and runtime toolkits, or even
intermediate brokers several components used for several platforms at the same
time), here we focus o the use of the dashboard following a wizard style, guiding
the user through all the components.

We are currently working on analyzing the dependencies among components, SO

that single functionalities can be offered separately to the user (Discover
component, Deployer componengtc.). Since we do not have real conclusions on

GKA&a &S0 O6GKIFIG O2dzZ R 0S LlzmfAaKSR Ay 20GKS
4.6 Prototype and detailed documentation of tSeaCloudsun-i A YS SYJANRY YSyYy
[9]), we preferto focus on the design and user experience on the option "SeaClouds

as a whole", in order to avoithcoherenciedetween the wizards and the usage of

individual components.

Therefore, we plan to consider the generation of an advanced mode which allows
the user to interact with the modules independently (for example, discovering

Cloud Offerings without deploying an application, or deploying an existing
deployment plan specified in TOSCA YAML).

3.2.1.Main View

Once the user has logged in to SeaClouds Platfoh, dashboard shows the
existing applicationsnanagedwith SeaClouds and an option to add new ones
(Figure 3).

SeaClouds Platform Projects Monior ~ Help About SeaClouds Projec Sign out

Project view

New:
Create a new project:

Or manage existing projects:

oo

Figure3. SeaClouds Main View

Internally, the dashboard will ask the deployer about which applications are already
deployed by using the Deployer API, together with the global status of the
application (getApplications).

SSackoeubs D4.5 Unified Dashboard and revision of Cloud Fe)

Modeling Planning Confroling

3.2.2.Status View

In Figure4, once the application is selected the SeaClouds Dashboard shows the
status of the application, and the current topology with the status of each node
(getApplication)

Nuro Gaming
Status ~
Application Monitor ,
SLA PHF

Undeployed

rest
.O K Amazaon

Repairing needed @

BReplanning needed

Stopped CloudFoundry

Figured. SeaClouds status view

3.2.3.SeaClouds Assistants

SeaClouds Dashboard will ease to the Application Administrator / Designer the
interaction with the Platform thanks to the SeaClouds Assistants, which hide
unnecessary information about the processasdisplaying the information in a
simple way (for example the user may not need to see the DAM before deploying it)
as it can provide the most common features.

3.2.3.1.Add new application

G! M&vI LILIX A O i ARMgyres $,A6] 7, Nadd YLBides most of the details
about the representation and the transmission of the data across the entire
LI FGF2NY¥e LGQa RSaAAIYSR (G2 KARS (2 GKS
the modules interact between them.

The user only has to desighe application by using a simplified version of the
Designer GUI, which does not output any TOSCA file. After the Application
Topology is defined, the user inputs the requirements of his application. Then,
SeaClouds will suggest the ideal Cloud Providensl will provide a onelick
solution to deploy the application. Until the user confirms the deployment, the
dashboard saves the new application information retrieved from each step in the
client, waiting for the confirmation to send the data to SeaClguidtform.

SSackoeubs D4.5 Unified Dashboard and revision of Cloud F{s)

Modeling Planning Confroling

G! RE&wE LILIXE AOFGA2Y SATFNRE aGFENIGA&A FalAy3d GKS
and the global propdies which should be optimizeas we can see iRigureb.
Add new application wizard

o 2 3 4 5

Application properties Design topology Optimize & Plan Configuration summary Process Summary & Deploy

Application Name

Fill these properties if you want to optimize your application

Desired application response time (ms)
Desired application availability (%)
Maximum estimated cost (€/month):

Workload (number of requests / per hour)

o m PROOF OF CONCEPT - Work in progress

Figureb. Add a new application wizard, step 1

Once the step 1 is completed, the user proceeds to design graphically the topology
of the application Figure6).

The user can add each of the modules that compose the application, configuring
each of them through an individual interface (s€egure7). This configuration
includes technological requirements (like application language) anefunastional
requirements, which includes information about the cost, location, reconfiguration
policies and QoS constraints. The user also chooses betweeg 12&aS or PaaS
infrastructure.

Once all this information is filled, the user can keep adding more modules in the
same way. When all application modules are configured, the Step 2 concludes.

In Figure 8 we can see how the Dashboard interacts with the SeaClouds
Components during the module creation process.

S€actoubs D4.5 Unified Dashboard and revision of Cloud

Modeling Planning Controlling

Add new application wizard Design and deploy cloud software

o :

Application properties Design topology Optimize & Plan Configuration summary ~ Process Summary & Deploy

Add._.~

REST Service

4 3

Back Next PROOF OF CONCEPT - Work in progress

Figure6. Design an application topology, step 2

Web application

Description w

Name PHP Node

Label on screen PHP

Technological Requirements w

Language Php v
Non-functional Requirements

Cost

Silver v
Location © None O Static @ Dynamic
Policy Follow the sun v
Qos Metric name Operator Threshold Actions
responseTime < M 1500 ms E
availability > v | 9939% [x

Provider Infrastructure «

Provideris © None © laas @® Paas

Close Edit

Figure7. Configuring an application module, step 2

SSackoeubs D4.5 Unified Dashboard and revision of Cloud S

Modeling Planning Centfroling

User Dashboard Deployer

Select "New module”

getAvailableModules()

availableModules
List available modules - —— — — — —

Configure module

store(module)
Draw module

Select "Next step”

Figure8. Designing the application pology, step 2. Sequence diagram

Before the third step of the wizard is visible to the user, the Dashboard sends the
AAM to the Matchmaker & Optimizer to retrieve the Cloud Offerings. When the
Dashboard has all the required information it shows it to the user (step 3), as we
can see irFigure9.

Add new application wizard Design and deploy cloud software

@

Application Design Optimize & Configuration Process Summary &
properties topology Plan summary Deploy
PHP — Amazon EC2 v

Amazon Elastic Compute Cloud (EC2) is a central part of Amazon.com's cloud computing
platform, Amazon Web Services (AWS). EC2 allows users to rent virtual computers on which to
run their own computer applications. EC2 allows scalable deployment of applications by
providing a Web service through which a user can boot an Amazon Machine Image to create a
virtual machine, which Amazon calls an "instance", containing any software desired. A user
can create, launch, and terminate server instances as needed, paying by the hour for active
servers, hence the term "elastic”. EC2 provides users with control over the geographical
location of instances that allows for latency optimization and high levels of redundancy.

%= Option summary
+ & Compute units: 5 Units
« ¥ Available RAM: 8 Gigabytes
+ = Bandwidth: 100 Megabytes/s
« [@ Monthly costs: 100 USD

More information

RESTEasy — HP v
MySQL — HP v
Back m PROOF OF CONCEPT - Work in progress

Figure9. Optimized plan selection, step 3

SSackoeubs D4.5 Unified Dashboard and revision of Cloud B!

Modeling Planning Confroling

The step 4Kigue 10) is just a summary where the user can review what will be the
result after the deployment process finishes. In this step, the Dashboard checks the
topology and shows the information about tiselected providers, cloud resources,
estimate cost and other key properties of the application. Also, the user may modify
the SLA. Once the user checks and approves the generated profile, final step 5
shows the result of deploying the application.

Add new application wizard Desion and deploy cloud software

Application properties Design topology Optimize & Plan Configuration summary Process Summary & Deploy
Your process is almost over, please just take a look before deploying your application

PHP

« Hardware overview
Compute units: 5 Units Available RAM: & Gigabytes
Bandwidth: 100 Megabytes/s Location: Amazon EC2
Monthly Cost (Estimated): 100 USD

+ Reconfiguration Strategies.

PHP o Scale-up when Response Time is less than 120ms
o Scale-down when Average CPU usage is less than 60%
RESTEasy
« Hardware overview
Compute units: 3 Units Available RAM: 2 Gigabytes
Bandwidth: 100 Megabytes/s Location: Amazon EC2
Monthly Cost (Estimated): 80 USD
« Reconfiguration Strategies.
None
MysaL
« Hardware overview.
Compute units: 4 Units Available RAM: 16 Gigabytes
Bandwidth: 100 Megabyies/s Location: Amazon EC2
Monthly Cost (Estimated): 150 USD
+ Reconfiguration Strategies
» Migrate when Transactions per seconds are greater than 1000
Sack PROOF OF CONGEPT - Work in progress

Figue 10. Configuration summary, step 4

Dashboard Planner Deployer
I I
I I
I
createDAM() [
I
I
DAM |
I I
createApplication() l
[
I
- A
creatrionProcessDescription i
I I
- I I
I I I
I I

Figurell. Generation and deployment of a DAM. Sequence diagram

SSackoeubs D4.5 Unified Dashboard and revision of Cloud e

Modeling Planning Confroling

The Dashboard requests a DAM to the Planner (method), and sends it to the
Deployer (createApplicadn) who will finish the deployment autonomouslyigure
11), notifying the descriptioprocess basedn the result of the deployment.

3.2.3.2.Remove an existing application
The remove application assistant is a very simple wizard. It allows the user to
remove an application in three steps.

The first step Figure12) uses the Deployer API to retrieve from the live model
which applications are currently running on SeaClouds (getApplications).

Then, after the user selects one of them, the second skegufel3) of the wizard
shows the information about the application that the user wants to remove in order
to allow him to check if he selected the right application.

During the third step Kigure14) is where the deletion process occurs. First, the
dashboard calls the SLA Service to remove the agreements associated to the
application.

Next, it calls the Depl@y API to remove the application itself (deleteApplication),
notifying the result based on the result of the expunge processufels).

Remove application wizard

6 :
Choose your application Confirm the removal Process Summary
& PetStore

ID: To2T3RR
Application Components

> ID: JD33ZT9U

> Type: Node JS 0.10

9 Locations
> ID: RR33NND

> Type: Mongo DB Cluster

9 Locations

¥ SeaClouds Website 4

ID: PPr2eTT
Application Components

> ID: ZKse12S
> Type: JBoss AS7
9 Locations

Back m PROOF OF CONCEPT - Work in progress

Figurel2. Selecting the applicatiowhich will be removed, step. 1

S€actoubs D4.5 Unified Dashboard and revision of CIoud

Modeling Planning Confrolling

Remove application wizard expunge an existing application

* o 3

Choose your application Confirm the removal Process Summary

Application to be removed

Name: SeaClouds Website
Uptime: 1 year 4 days 7 hours 54 minutes
Main url: http://www.seaclouds-project.eu
Active SLA violations: None
Last SLA violation: March 07 2014
Modules: 1

o JBoss AS7 in Amazon EC2

+ e 8 s e e

You are going to REMOVE this application, this process is IRREVERSIBLE are you sure?

Back YES PROOF OF CONCEPT - Work in progress

Figurel3. Removal operation confirmation, step 2

Remove application wizard Expunge an existing application

1 : o

Choose your application Confirm the removal Process Summary

Please hold on while we remove your application

100%

Process log

Deployer: Verifying exiting dependencies... Done
Monitor: Disabling Monitoring Agents... Done
Deployer: Stopping running entities... Done
Deployer: Removing instances... Done

Deployer: Everything done.

Back PROOF OF CONCEPT - Work in progress

Figureld4. Remove process summary, step 3

SSackoeubs D4.5 Unified Dashboard and revision of Cloud Fe{s

Modeling Planning Confroling

User Dashboard Deployer SLA Service

Enters section I
| “Remove application |
‘— wizard" '

getApplications()

Show applications list * — — — — — — —

Select "application”

[

I

I

I

applications(] |

I

I

Ask for confirmation :

Confirms deletion

terminateAgreement(agreementld)

deleteApplication(application)

applicationDeleted |

Show results log |

Figurel5. Remove application wizard. Sequence diagram

3.2.4. Monitor section

Once an application is deployed and running, it is able to be monitored using the
Monitor interface. InFigurel6 we can see an example where several aspects of an
application are being followed and shown.

SeaClouds Platform Projects Monitor Help About SeaClouds Project Sign out
Nuro Gaming Usage Usage Usage
Status))

. .) 2
‘Application Monitor April
50 Hs1 50
SLA . W1 3
0]
g e W w ¢ o
& @ o
p ¢
Usage Usage

Figurel6. Application monitor

In order to retrieve the dataassociated with this view, the dashboard internally
queries the API to retrieve what metrics are available for the selected application
(getAvailableMetrics). After that, the monitor has all the available metrics and the

SSackoeubs D4.5 Unified Dashboard and revision of Cloud B/

Modelling Planning Controling

dashboard registers himself as abserver of the metrics to receive notifications
(addObserver) from the Monitor, and updates the graphs based on the metric
values Figurel?).

User Dashboard Monitor
Select I
—— "Application Monitor" —— —
getAvailableMetrics(application)
availableMetrics
Show available metrics
Select "Metric"
” addObserver(metric, callback)
monitoringData
updateGraph()
B Show "Graph”
—'_t h'_l

Figurel?. Dashboard application monitoring process

3.2.5.SLA section

The SLA view allows to check at a glance how your application has been working. It
shows the agreements for each provider, as we can sdggarel8. Therefore, it
details the current SLA accomplishment. It maintains a list of the succeed rule
violations and a list of penalties as consequence of the aforementioned violations.
In Figurel9 we can see how the Dashboard does it internally using the SLA.

SSackoeubs D4.5 Unified Dashboard and revision of Cloud St

Modeling Planning Confroling

Figurel8. SLA usage and status summarize

In order to generate the view thdashboard retrieves all the available agreements

for the current application (getAgreements). Once the agreements are in the client,
per each agreement the dashboard queries the SLA about the global status of the
agreement (getAgreementStatus), togethetthwihistorical data of the violations of

QoB (getQoBViolations) and QoS (getQoSViolations) and their associated penalties
(getPenalties).

Figurel9. Interaction between the Dashboard and the SLA API

