SeaClLOUDS

AGILITY AFTEerr DePLOYmenT

Modelling

Planning Controlling

SeaClouds Project

D4.1 Definition of the multi-deployment

and monitoring strategies

Project Acronym
Project Title

Call identifier
Grant agreement
no.

Start Date
Ending Date

Work Package

Deliverable code
Deliverable Title
Nature
Dissemination
Level

Due Date:

Submission Date:

Version:
Status
Author(s):

Reviewer(s)

SeaClouds

Seamless adaptive multi-cloud management of service-based
applications
FP7-1CT-2012-10

Collaborative Project

1st October 2013
31st March 2016

WP4. SeaClouds run-time environment

D4.1
Definition of the multi-deployment and monitoring strategies

Report
Public

M12

10t October 2014

1.0

Draft

Miguel Barrientos (UMA), Jose Carrasco (UMA), Javier Cubo (UMA),
Francesco D’Andria (ATOS), Francisco Duran (UMA), Alex Heneveld
(CloudSoft), Adrian Nieto (UMA), Andrea Turli (CloudSoft), Ernesto
Pimentel (UMA), José Maria Alvarez (UMA)

Ana Juan Ferrer (ATOS), Michela Fazzolari (UPI)

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X
PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

co Confidential, only for members of the consortium (including the Commission)

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

Table of Contents

[o) T {U T <P PPRP 5
LISt OFf TabI@S. ... s 6
EXECULIVE SUMMIAIY ittt e e e e e e e ettt e e e e e e e e e eeeeeeeenes 7
Lo INErOAUCTION oo et e e e e e e e eaneee s 8
1.1 GlOSSAry Of ACIONYMS...ciiiiiiiiiiieeeeiiiiitee e e e riire e e e e esiireeeeeessbareeeessssreeeeessnnnnns 10

2. Multi-cloud deployment ProCESSccuvviiiiiiiiiiiieee et e s e saaeee e 11
P20 R =Y o] [0}V ol Tol=Y o £ PP PPRRRPR 11
2.1.1 Mapping the application modules: Entitiesccccceeeivriiiieeeiiniiiieee e 11
2.1.2 Application and Parent........cccceeiiiriiiieeiiiiiiieee e 12
2.1.3 Sensors, effectors and PoliCieS......c.uuvieeiiriiiiiie e 13

2.2 Deployable Application Model analysis (DAM)cc.ceeveieeeeiieeeeiiieeerieee e 15
2.2.1 Outline of the Deployable Application Model..........cccccoviiiieiiiniiiiieeeennnns 16
2.2.2 ROOE EI@MENTS .ot 16
2.2.3 ServiceSPeCifiCationcooiciiiiiiiiiiie e 17
2.2.4 Location: The key of the multi-deployment........cccceeviiiiciiiieeiiniiiicee e 19
2.2.5 CoNFIBUIAtioN ..cciiiiiiiiiiiieeeiieee e e e s e e e e 21
2,26 Children e 22
2.2.7 Services CONSTIaiNT ...ccciiiiiiiiiiiii e 23

2.3 Deployer ArChiteCUIE ...cciii i e e e s sireee s 24
2.3.1 Live Application MOdel........uuiiiiiiiiiiiiiee et 27
2.3.2 Post-deployment STrategyccccivrciiiieeiiiiiieee e 27

3. IMONITOING PrOCESS ...ttt e e e e e e e e et e et ettt et e e e e e e e eeeeeeeereeeeeeesnnnnans 29
3.1 MoNitoring ArChitECTUIE ...cciiiiiiiiee et e s e 29
3.2 MONItOrNG IMANAEEI ...coeiiiiiiiiiieeeeee ettt s e e e e e e e e eeeeeeeeeeeesnnnnaas 30
3.3 MONItoring CONNECTON ...ccciiiiiiiiiieiee ettt e e e e e e e e e e e e e e senaeaas 30
3.4 MONITONNG ABENTS ..ottt e e e e e e e e e e e e et eeeeeenenanaas 30
3.5 QOS POlICIES & ANAIYSIS .uvvviiiiiiiiiiiieeeiiit ettt s e e s e siren e e e s e e aees 32
3.6 Persistent Data StOrage...couuu it 32
3.7 MoONitoring STrategy ...oceeiiiiiiiee e 32
. SLA SEIVICE oot et e e e e 35
5. Nuro (early) Case: SeaClouds in action at Run-time...........ccooeveeiieiiiierieeecciieeeen, 38

TR 001 s Vol [1Yo Y s - TR 45

seacLoubs D4.1 Definition of the multi-deployment and [ZEN

AGILITY AFTEr DePLOYMenNT

Modelling Planning Controlling monitoring StratEgIES
ANNIBXES ettt e ettt e ettt e e e e e e e e e e e e et ettt ettt a e e e e e e e e e eeee e et tettaebrh e eas 46
A. Default metrics and user-defined properties........cccceeeeeicieeeeeinnciieeee e 46
B. WS-AGIreemENT ..ot e e e e e eneeee 50

Y =T =] o Tol= LT T OO PTRPPTROTRRRN 53

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

List of Figures

Figure 1. Initial Architecture of the SeaClouds Platform (see deliverable D2.2 [2])......... 8
Figure 2. Entity application hi€rarchycccovceiieieiiniiiiee e 13
Figure 3. Sensor, Effector and Policy eXampleccooviiiiiiiiiiiiiiieeinieeee e 15
Figure 4. Initial Architecture of the Deployer module.cccccovieeiiiniiiiiee e 25
Figure 5. Run-time prototype. Deployer module........cccueeveiiiiiieieeiiniiiiiee e 26
Figure 6. Deployment strategy - Interaction between modulescccccceevvviivieeeinnnns 27
Figure 7. Monitoring architecture diagram.........ccceeiviiiiieee i 29
Figure 8. Monitoring Connector EXamMPlecoocuviiieeiiiiiiiieee e 30
Figure 9. Example of monitoring data provided by a Monitoring Agent.........ccccceeeenne 31
Figure 10. Monitoring strategy - Interaction between modules.........cccccceevvvivieeeinnnne 33
Figure 11. Run-time prototype. Monitor modulecceeeevviiiiiiiiiiniiiiieee e 34
Figure 12. SLA Service architecture diagram........cccccovviiiiieiiiiiiieeee e 35
Figure 13. Support of the SLA Managercuuuiiiiiie et e e s 37
Figure 14. Nuro case application ModUIESuvviiiiiiiiiiiieiieee e 38
Figure 15. Representation of the Concrete Deployment of the modules of the Nuro

(1T I O T I {8 Lo L PR PR 38
Figure 16. Nuro (early) Case Study deployment diagramcccccceeevviieeiiiieeecrieeeennen, 40
Figure 17. Nuro case-study monitoring Strategy.......coecuveeeeiiiiiiiieeiiiiiieee e eeriieee e 41

Figure 18. WS-AZreementttt e e e e e e e eeeeeee 50

seacLoubs D4.1 Definition of the multi-deployment and [N

AGILITY AFTEr DePLOYMEeNT

Modelihg Plannidg Confroling monitoring strategies

List of Tables

TaDIE L ACTONYIMS .eiiiiiiiiieeee ettt e e st e e st e e s s s sabaeeeeesssbbaeeeesssasenaeeessannnes 10
Table 1. DAM. ROOL €I8MENTSuuiiiiiiiiiiieee et e e e e 17
Table 2. DAM. Service specCifiCationueiiiiiiiiiiiei i e e 19
Table 3. DAM - Service CONSEIaiNtsceeiiiiieiiii e e e 23
Table 4. NUro metrics. Database........ueeeiieiieiiiie e 41
Table 5. Nuro metrics. Request analyliCS......coocuviiiiiiiiiiiiiei e 41
Table 6. Java-based platforms metrics.ccccoovieeicccc e, 47
Table 7. Machine 1eVel MELIiCSuuiiiiiieiieeieee e 47
Table 8. Server POl MELIICS. eeeeeas 47
Table 9. Database MELriCS. ..ot e e e e e e e e e e e e e r e e e e e eeeas 48
Table 10. WED SErVer MELIICS.uuiiiiiiiiiieeeee e ee et e e e e e e e e e s e e e e enar e areraeeeeeeas 48
Table 11. Web application server metrics.........ooooecccciiiiiiieeieeeeee e 48

Table 12. Web application server cluster metrics.occvveeeiiiiiiiiieeiiniiiiee e 49

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

Executive Summary

This deliverable presents the definition of the strategies to deploy on specific cloud
providers, and to extract the information necessary for performing monitoring of
deployed applications from the description of the SeaClouds orchestration defined in
Deliverable D3.1 [1]. Specifically, the document describes how the modules of a cloud
application are deployed on heterogeneous clouds, and how the monitoring and SLA
services are initialized and executed. A real use case, namely the Nuro (early) case, is
used to illustrate the application of the strategies defined in this document.

seacLoubDs D4.1 Definition of the multi-deployment and NN
monitoring strategies

Modelling Planning Controlling

1. Introduction

The main objective of the WP4 (SeaClouds run-time environment) is the design of a
unified management and monitoring infrastructure to help on the distribution of
cloud-based applications over multiple and heterogeneous clouds, and to re-distribute
its modules in these clouds during execution, considering a universal set of metrics to
guarantee the desired properties and requirements, including Quality of Services (QoS)
and Quality of Business (QoB).

Following the Figure 1, corresponding to the Initial Architecture of the SeaClouds
Platform defined in Deliverable D2.2 [2], we overview how the different components
interact. Specifically, in this document we present the SeaClouds run-time
environment composed by the Deployer, Monitor and SLA components, after present
the Discoverer and Planner in Deliverable D3.1, corresponding to the SeaClouds
design-time. A more detailed flow representing all the interactions among the
different components, and representing functionalities, is explained (apart from in
D2.2) more in detail in Deliverable D5.4.1 related to the Initial version of sw platform
[3] (we refer the reader there to not repeat here the sequence already described in
that document).

(Cloud Systems

GUI/ Deployment Manager d
Unified Dashboard view under
Management
J
A A A A) Non—TOSCA/
Seaclouds API CAMP-compliant
Engine) . q) *
(Planner / Business | | o A Service | [Monitoring |
Controller) SLAinfo | L7 [info)
‘ ‘Replanning A =
1 trigger (\ ~
(stas) e e Staus 5
Abstract) Selected . reques! 33 || ToscA-compliant
Deployment SLAs ‘ = g
Plans Y i
AN i(;l:t:;i(t’ Monitor slt:ft:s }A @
\Deploymen Plan) Y
— pul =
| Requirements | > — S
—_— Planner Live \ (Concrete 3
| App Topology | Model | |Deployment % S
(AL TR Deployer |_Plan DPn | =3
Concrete ‘:"
Deployment}—. -
(Plan DPm-n
(Available | ‘ _ (Capabilities) =]
Desi Capabilities Discoverer | "~ |__seeking ‘—:E'_’
e\,sig,‘er _&SLAs <t {Capabilities | 32
N _response \‘ 5

L
-~

\

Figure 1. Initial Architecture of the SeaClouds Platform (see deliverable D2.2 [2])

The multi-cloud deployment component, presented in Section 2, will be in charge of
generating a concrete deployment plan for each target cloud platform. Concrete
deployment plans include all the needed steps to be performed to actually deploy a
(set of) application module(s) on each specific cloud platform. In order to perform this,
the Deployer component gets an abstract deployment plan, generated by the Planner
component [1], together with the SLAs of the selected services.

seacLoubs D4.1 Definition of the multi-deployment and [ENN

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng StrategIES

The monitoring component is described in Section 3. Its purpose is to monitor the
deployed application modules, and to verify the QoS properties for specific modules
and the SLA of the whole application, specified at design time. The Monitor
component will be connected to a reconfiguration component (which will be
completed in the next phase of the project, in Deliverable D4.3 [4]) capable of
performing an evolution or migration of modules composing the application when it is
required. Thus, SeaClouds will preserve the soundness of the SeaClouds orchestration
specification.

The SLA service is introduced in Section 4. It enables the SLA management of business-
oriented policies. Given a component to generate the formal documentation
describing agreements between the parties involved (customers, application providers
and cloud providers), the SLA service will guarantee all the agreements associated with
the fulfillment of the non-functional properties.

To facilitate reuse and modularity, the operations corresponding to the deployment,
monitoring and SLA service (in addition to the planner) will be provided as a unified
API, and a dashboard will be provided (deliverable D4.2 describe a first design of the
SeaClouds API [5]).

A distinguishing aspect of the SeaClouds platform is that it intends to build on top of
two OASIS standards initiatives: TOSCA (to represent application topologies) and CAMP
(to use standardized artifacts and APIs that need to be offered by PaaS clouds to
manage the building, running, administration, monitoring and patching of applications
in the cloud). It is, however, worth noting that the Deployer and the Monitor does not
require cloud providers to be TOSCA or CAMP compliant. The Deployer can generate
concrete deployment plans for non-TOSCA/CAMP compliant providers as needed [2],
and the Monitor can take non-TOSCA/CAMP compliant monitoring agents (as will be
explained in subsections 3.3 and 3.4).

To illustrate the strategies defined, we report in Section 5 how the deployment and
monitoring components, and the SLA service, have been used in a real case study,
namely the early version of the Nuro case study, which is detailed in Deliverable D6.3.1
[6] (to be delivered together with the current deliverable at month M12).

Section 6 presents our conclusions of the deliverable. Two annexes provide further
details on different aspects of the deliverable, namely on default metrics and user-
defined properties (Annex A), and on the SLA service used (Annex B).

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFI ng Strategles

1.1 Glossary of Acronyms

Acronym Definition
Paa$S Platform-as-a-Service
QoS Quality of Service
QoB Quality of Business
SLA Service Level Agreement
TOSCA Topology and Orchestration Specification for Cloud Applications
CAMP Cloud Application Management for Platforms
GUI Graphical User Interface
API Application Programming Interface
APP Application
DB Database
WP Work Package
DAM Deployable Application Model
YAML YAML Ain't Markup Language
AWS Amazon Web Services
VM Virtual Machine
IP Internet Protocol
REST Representational State Transfer
uiD Unique Identifier
JSON Java Script Object Notation
JVM Java Virtual Machine
XML Extensible Markup Language
SLO Service Level Objective

Table 1: Acronyms

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFI ng Strategles

2. Multi-cloud deployment process

In this section, we present our approach to the multi-deployment process and the
mechanisms to manage, orchestrate and maintain the application modules distributed
over the target cloud providers. These are provided according to the specification of
the initial architecture described in Deliverable D2.2 (Initial Architecture). To
understand the architecture of the deployer and its deployment strategy (defined
later), we first introduce some of the main concepts used in the Deployer component,
as well as the plan specified to deploy the cloud application.

2.1 Deployer concepts

The SeaClouds Deployer module contains the mechanisms in charge of deploying and
managing the cloud applications. Here, we introduce the concepts required to manage
an application and its components, which include the entities hierarchy and the
sensors, effectors and policies.

2.1.1 Mapping the application modules: Entities

Entity is considered the central concept in a deployment. An entity represents a
resource under management, which can be either a base entity (an individual machine
or a software process) or a logical collection of entities.

Fundamental to the processing model is the capability of entities to be parents of
other entities (the mechanism by which collections are formed), with each entity
having a single parent entity, up to the privileged top-level application entity, which
has no parent.

As entities are software constructions, they can be extended, overridden, and
modified. Entities can have events, operations, and processing logic associated with
them, and it is through this mechanisms that management is carried out.

For instance, the module of a web application which contains the business logic will be
represented using an entity. This describes the application’s nature, the technological
requirements, and a set of operations (such as deploying the application on an
application server). Also, this entity could define dependencies among modules. Thus,
the application’s components, dependencies and other elements are normalized (or
semi-standardized) which is very useful to deploy and manage the deployed
applications in a homogenized way.

This approach has some additional advantages, since we can consider the entities like
agnostic elements; they are not dependent of any particular technology and define a
flexible methodology to perform heterogeneous deployments of multi-cloud
applications. This eases the description of the application’s structure (topology
specification) and the adaptation of the application’s components to the constraints
and properties of the cloud providers used, addressing vendor lock-in and portability
issues.

seacLoubDs D4.1 Definition of the multi-deployment and
monitoring strategies

Modelling Planning Controlling

The main functionalities of an entity are:

Provisioning the entity in the given location or locations;

Holding configuration and state (attributes) for the entity;

Reporting monitoring data (sensors) about the status of the entity;
Exposing operations (effectors) that can be performed on the entity; and
Hosting management policies and tasks related to the entity.

2.1.2 Application and Parent

Every entity has a (unique) parent entity, which creates and manages it. There is only
one exception: application entities do not have parents, they are the top-level entities
created and managed externally, manually or programmatically.

All entities, including applications, can be the parent of other entities. A "child" entity
is typically started, configured, and managed by its parent. For example, an application
may be the parent of a web cluster, and the cluster can, in turn, be the parent of its
web server processes. In the management console, this is represented hierarchically in
a tree view (see Figure 2). This hierarchy allows the application’s components to be
managed according to their deployment dependencies, making easier their description
and organization. For example, a JBossServer parent entity could contain several child
entities such as deployed applications, runtime-modules.

Please note that this hierarchy contains only the deploying dependencies, and does
not contain functional relationships between components. E.g., the functional
dependency between a database that is used by a web application will most probably
not appear in the deployment hierarchy of entities. Functional relations will be defined
through the topology description (Deployable Application Model, DAM).

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DEPLOYMENT

Modelling Planning Controlling m o n itori ng Strategies

Application

parent

Entity

child

parent

child
>

child

——— B 1Y

parent

child

child

Figure 2. Entity application hierarchy

2.1.3 Sensors, effectors and policies

Sensors (activity information and notifications) and effectors (operations that can be
invoked on an entity) are defined by entities as static fields on the entity." Policies
perform the active management, by tracking changes on monitored entities and
performing changes on them if necessary. Entities can have zero or more Policy
instances attached to them.

® Sensors can be updated by their entities or associated tasks, and sensors from
an entity can be subscribed to by its parent or other entities to track changes in
an entity's activity.

e Effectors of an entity can be invoked by an entity's parent remotely (its
manager), and the invoker is able to track the execution of that effector.
Effectors can be invoked by other entities.

® Policies can subscribe to sensors from entities or run periodically. When they
execute, they can perform calculations, look up other values, and, if deemed

YIn future releases, the communication between sensors, policies and effectors will
happen through the SeaClouds API.

seacLoubs D4.1 Definition of the multi-deployment and

Modelling Planning Controlling monitoring Strategles
necessary, invoke effectors or emit sensor values from the entity they are
associated with.

In Figure 3, we use a simple example to illustrate the aforementioned concepts. We
show a server cluster, a topology component which is represented by an entity. We
describe the policy that manages the system’s behavior.

This policy is in charge of maintaining the scalability of the system and ensuring the
server response time. In this case, the cluster contains several server instances to
support a web application.

The entity that represents the cluster has a sensor to indicate the overhead and the
response time of the system.

Also, in order to allow the management of the cluster, the entity has an effector to add
or remove an instance to its server set.

Thus, the first image shows how the requestTime notification is received by the policy
(1), which checks the cluster status, and decides to add a new server to the cluster (2).
The third image shows the final cluster (3).

These concepts are used in the Deployable Application Model to describe the
application topology and its management and orchestration in a flexible way.

seacLoubs D4.1 Definition of the multi-deployment and
AGILITY AFTEr DEPLOYMENT . . .
Modeling Planning Controlling mon ItOfI ng Strategles
Server Cluster requestTime RequestTime
(Sensor) Po"cy

A

AddInstance
(Effector)

(1) RequestTime
Sensor Notification

RequestTime
requestTime
(Sensor) Policy

!ll g,
<

3

o

s

C

AU

AddInstance
(Effector)

(2) Add Server to
the cluster

Server Cluster requestTime RequestTime
(Sensor) Policy

AddIinstance

(Effector)

(3) Server added

Figure 3. Sensor, Effector and Policy example

2.2 Deployable Application Model analysis (DAM)

In this section, we present the Deployable Application Model (DAM) to specify the
structure of an application, the abstract deployment plan. Following the CAMP
specification, DAM uses a YAML syntax allowing the application topology to be
described. An application is composed of several modules and relationships, which are
essential to maintain the application structure, dependencies among modules, and
information on how they are related.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFI ng Strategles

Thus, the Deployer receives a DAM, which specifies all the required information on the
application to deploy, its distribution and orchestration, and then it follows the
instructions to deploy the application using the indicated services. After deployment,
the Deployer maintains the management of the application, and monitors its status.

The SeaClouds Initial Architecture [2] describes the Deployer component. Different
engines could be used to deploy applications. In our current solution, Brooklyn is being
used as Deployer engine, to accomplish the heterogeneous management of the cloud
providers. Thu, we define the DAM based on the YAML Blueprint specification of
Brooklyn [7].

2.2.1 Outline of the Deployable Application Model

Below, we outline the DAM schema. Within this outline we also provide an overview of
the main components needed to describe the application and its management.

name: name of application
location: a location specification element as a string or map.

services: this block contains the entities which compose the application.
- serviceType/service: service reference
name: human readable name of entity.
id: id of entity.
location: location (provider service) where the entity will be deployed (target cloud
provider).
config: (features and requirements of the entity).
children: a list of child entities specifications which will be configured as children of
this entity.
policies: list of policy specifications which add behavior to the entity.
enrichers: enrichers of this entity.
initializers: values needed to configure this entity (key values).

The schema shows the elements needed by the Deployer in order to deploy, monitor

and manage the application components over the target providers. We describe each
of these elements in more detail in the following sections.

2.2.2 Root Elements

In the first abstraction level, the DAM is composed by Root Elements.

Name Specifies the name of the application in a
human readable way. This name is
specified by the SeaClouds user.

Location This key references the global
deployment location by default. If an

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

application entity does not describe its
own location key, it will be deployed on
the provider described by the global
location (see location section for more
detailes).

Services ServiceSpecification. This element
contains all the application’s components
description (as explained in Section 2.2.1
entities is the general concept for
services, agents, artifacts, etc.).

Table 2. DAM. Root elements
Here we can see an example of the RootElements.

name: java-cluster-db-example
location: localhost
services:

- serviceType:

ServiceSpecification

The following section describes ServiceSpecification.

2.2.3 ServiceSpecification

Within the services block, a list of values maps should be supplied, with each map
defining a ServiceSpecification. The following map describes the application’s
components, their features and requirements.

service/serviceType/service_type Each ServiceSpecification should declare
the service type of the application
components, indicating what type of
service is being specified there. For
example, a JBossServer.
It contains the Entity Class that describes
the service. The following formats are
supported for defining types:

e io.package.JavaEntityClass

e java:io.package.lavaEntityClass
E.g.: entity.webapp.jboss.JBoss7Server
describes a JBossServer7 entity.

id This field defines the identifier

seacLoubDs

AGILITY AFTEr DePLOYMenNT

Modelling Planning Controlling

D4.1 Definition of the multi-deployment and

monitoring strategies

component. It is the key used by the
Deployer to find and manage the
application components.

name

This field describes the application name
in @ human readable way. The Deployer
does not use this field to identify the
application elements; it uses the id field
(see above).

location

This field denotes the provider to be
used to deploy the application element.
If this field is not included, the
application will use the global
deployment location described in the
RootElements (see the Location section
below for more details).

config

This element describes the configuration
of the entity. It can contain arbitrary
values, which depend on the entity
specification. E.g, the port of a server
entity (see the Config section).

children

This field is a list of ServiceSpecification
descriptions that will be configured as
children of this entity. An entity could
have several entity children, which have
to be specified through this field (see the
Children section).

policies

With this field we can specify the policies
to be used by an entity. E.g., Resizable
policy. They are references to policies of
entities in the YAML plan, and are are
referenced using the Entity Class. E.g.,
test.policy.TestPolicy. Each policy could
be a map that references and initializes
policy parameters.

enrichers

Enrichers follow the policy methodology.
In this case, an enricher wraps a policy to
process the data and generate a
processed result. Like policies, enrichers
are specified through entity classes,
configured through the key value map.
E.g., the Delta Enricher converts absolute
sensor values into a delta.

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMenNT

Modelling Planning Controlling monitoring Strategles

initializers A list of Entitylnitializer instances to be
constructed and run against the entity.
Each initializer is defined as a map, by
providing type and config as keys. An
Entitylnitializer instance allows arbitrary
customization of an entity whilst it is
being constructed, such as adding
dynamic sensors and effectors.

Table 3. DAM. Service specification

2.2.4 Location: The key of the multi-deployment

Location specifications are supplied either for the entire application (at the root
element level) or for a specific ServiceSpecification. Locations define the cloud
providers used to deploy the application components. Moreover, the providers could
have several data centers distributed around of the world. In this case, the location
clause allows us to point to a concrete region. The next example shows how AWS is
selected to distribute a module over its data center in US East, Northern Virginia
(http://docs.aws.amazon.com/general/latest/gr/rande.html) using alternative
supported formats for specifying locations.

location:
jclouds:aws-ec2:
region: us-east-1
identity: AKA_YOUR_ACCESS_KEY_ID
credential: <access-key-hex-digits>

or

location:
jclouds:aws-ec2:us-east-1
identity:AKA YOUR_ACCESS_KEY_ID
credential: <access-key-hex-digits>

or

location:aws-ec2:us-east-1
identity:AKA YOUR_ACCESS_KEY_ID
credential: <access-key-hex-digits>

As the provider’s credentials are necessary to use the cloud services, they will be
specified in the Deployer’s properties file. If specified in the properties file, the
deployer will manage the credentials for the deployment mechanisms. Then, the
location only has to describe the service needed for the deployment:

location:
jclouds:aws-ec2:

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DEPLOYMENT

Modelling Planning Controlling monitoring Strategles

region: us-east-1
or, with a more compact notation,

location:
jclouds:aws-ec2:us-east-1

or

location:aws-ec2:us-east-1

DAM allows the specification of multiple locations for an entity:

location:localhost
location:named:my_openstack
location:aws-ec2:us-west-1

The Deployer engine usually has some predefined providers (by default) to specify the
situation when several pre-existing nodes are using. Thus, for example, the called
“byon” provider, predefined in the Brooklyn engine could be used in this format:

location:
byon:

user:root
privateKeyFile:~/.ssh/key.pem
hosts:
-81.95.144.58
-81.95.144.59
-seaclouds@159.253.144.139
-seaclouds@159.253.144.140

The following example shows an application that specifies the location in which to
deploy.

name: sample-single-jboss

description: Single JBoss example

services:

- serviceType: entity.webapp.jboss.JBoss7Server
name: jbossl

id: jbosslServer

location: aws-ec2:us-west-1

This location methodology clearly describes the final cloud provider specification and
has several advantages for multi-deployment. Each entity describes the target cloud
over which it will be deployed through a location clause. Thus, the Deployer hides the
final constraints and features of the cloud providers used to distribute the application
component. In the next example, we show an application topology that uses several

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DEPLOYMENT

Modelling Planning Controlling monitoring Strategles

services from different platforms, in this example, HP Cloud
(http://www.hpcloud.com/) and AWS (http://aws.amazon.com/).

name: multi-deployment-example

services:

- serviceType:entity.webapp.ControlledDynamicWebAppCluster
name: My Web

location: aws-ec2:us-west-2

- serviceType: entity.database.mysql.MySqlNode
id: db
name: My DB

location: hpcloud-compute:az-1.region-a.geo-1

Please note that the Deployer requires some knowledge to manage and use the
services of the target cloud provider in order to adapt the distribution of the
application component to the selected providers. In fact, the homogenization
mechanisms use the provider interfaces to accomplish this task.

2.2.5 Configuration

All entities have a map that contains configuration information. This can contain
arbitrary values, typically keyed under staticConfigKey fields on the Entity subclass.
These values are inherited, so setting a configuration value at the application level will
make it available in all its sub-entities unless it is overridden.

Configuration is propagated when an application "goes live", so configuration values
must be set before this occurs. The configuration values define several entity features,
as the implementation artifact path, the http port, the proxy http port, and so on.

config:
keyl: valuel
key2: value2
key3: value3

The values are specified like a key map, such as:

name: java-cluster-db-example

services:

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DEPLOYMENT

Modelling Planning Controlling monitoring Strategles

- serviceType: entity.webapp.ControlledDynamicWebAppCluster
name: My Web
location: aws-ec2:us-west-1
config:
wars.root: example.war
http.port: 9280+
proxy.http.port: 9210+

Thus, the entity’s configuration allows specifying all the features necessary for its
configuration. However, we have to keep in mind that the mentioned configure fields
contain the values used to configure the real application component that is
represented by the entity.

2.2.6 Children

An entity could have some child entities; the parent entity manages their lifecycles.
The children of an entity are defined like a ServiceSpecification again, a list of services
which will be managed by the parent (see 1.2.3 Service Specification). It is a smart way
to specify the children entities, reusing the entity specification list recurrently.

-service Type: typeOfService
name:
location:

children: ServiceSpecification
The following example illustrate the children specification:

name: java-cluster-db-example
description: Simple Web App

location: aws-ec2:us-west-2

services:

- serviceType: entity.basic.SameServerEntity

name: parent

children:

- serviceType: entity.webapp.ControlledDynamicWebAppCluster
name: My Web

- serviceType: entity.database.mysql.MySqlNode
id: db
name: My DB

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES
2.2.7 Services constraint

A DAM defines the features and requirements of the provider over which the
application components are to be deployed. These requirements specify the physical
properties of the deployment services, such as, memory, storage or operating system,
as the following example illustrates:

provider: aws

id: m3.medium

memory: 3.75 #GB
storage: 4 #GB
os: linux

The user specifies these constraints to optimize or limit the execution of the
applications, e.g. consume controls and so on. The Deployer allows these constraints
to be specified by using the following elements:

name: name of application
services:
- serviceType: typeOfService
location:...
name: name of component
provisioning.properties:
constraintl: valuel
constraint2: value2

constraint3: value3

provisioning.properties This field defines, using a key-value map,
the features to compose the elements
that specify the constraints of the
deployment environment.

Note that the provisioning.properties will
be ignored if deploying to localhost or
byon fixed-IP machines.

constraintN:valueN This field is a pair (constraint-value) that
specifies a particular constraint or
feature and its expected value in the
deployment environment

E.g.:
minRam: 8192
minCores: 4

Table 4. DAM - Service constraints

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monito ring StrategIES

Table 3

The following example illustrates the use of the fields described above:

name:simple-vm
services:
-type:.entity.basic.EmptySoftwareProcess
name:VM
provisioning.properties:
minRam:8192
minCores:4
minDisk: 100

This will create a VM with the specified parameters in the chosen location. The entity
is called "VM", and the hostname and IP address(es) are reported as sensors.
Moreover, there are many more provisioning.properties supported here, including:

e A user to be created (if not specified it creates a new user with the same
username that SeaClouds is running under).

e A password for the user or a publicKeyFile and privateKeyFile (defaulting to
keys in ~/.ssh/id_rsa{.pub} and no password).
MachineCreateAttempts may be used for unreliable clouds.

e And other options, like imageld, userMetadata and disk and networking
options (e.g. autoAssignFloating for private clouds).

2.3 Deployer Architecture

As described in the Initial Architecture of the SeaClouds Platform, Deliverable D2.2 the
Deployer is in charge of deploying the application on the cloud providers
infrastructure, by executing the instructions contained in the Abstract Deployment
Plan (ADP), specified as a concrete plan, the DAM, that comes into the Deployer as an
output from the Planner. As a result of the execution of the DAM plan, the Deployer
will deploy, manage and monitor the applications, and thus it will generate a live
model of the managed applications (the consortium is working currently on this, and
the results more stable will be delivered in Deliverable D4.3, Design of the run-time
reconfiguration process). The Deployer will have some healing capabilities to repair a
managed application that is violating one or more constraints. Therefore, it has to
monitor not only the deployment activities but also the running applications and
report the failures.

Thus, the Deployer receives a DAM, and then it performs the application components
and resources distribution using the target cloud services. Following the architecture
described in D2.2, the DAM is taken from the Dashboard, coming as a Planner output.

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMenNT

Modelling Planning Controlling mOI’\itO ring Strategles

This interaction between the aforementioned SeaClouds components will be
orchestrated using the SeaClouds API (a first specification will be delivered in D4.2).
Figure 4 shows an initial approach for the Deployer architecture, describing its
modules and the responsibilities. In this figure the high-level layout description of the
components that constitute the Deployer is shown. Please note that the API layout
specifies the operations that define the set of Deployer functionalities [8].

Deployer
[Deployer API]
Exise : I,'
Applaton deployment e
i stalus notifications
l procless
Deployer Engine
Management Live Model
> e e
Cloud adapters

Deployment context Management

T

Cloud Providers

Figure 4. Initial Architecture of the Deployer module.

The main element of our SeaClouds Deployer is the Deployer Engine. The Deployer
Engine receives a DAM through its Deployer API and executes the DAM (Deploy an
application action in Figure 4). As the Deployer Engine is cloud-agnostic, it is able to
deploy applications to the different cloud provider services using multiple Cloud
Adapters. During the deployment process, the Deployer Engine monitors the status of
the task in order to maintain the knowledge about the distribution. In this case, as
aforementioned, we use Brooklyn as the Deployer Engine.

Once the application has been deployed, the Deployer Engine uploads the live model.
This model contains the data structure that, in turn, contains a profile about the
topology of the real application distribution over the target providers (using the cloud
adaptors). The profile includes information about (i) relationships and dependencies,
and used services, and (ii) about the deployment context as IP machines, O.S used, real
listener port, metadata of the applications components, etc.

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES

The Monitor and the Dashboard use the live model (see Figure 1) to maintain the
status of the application according to the constraints and features that have been
described by the user. In addition, the Dashboard checks the live model in order to
maintain the graphic representation of the application distribution.

In Figure 5, the early run-time prototype of the Deployer component is depicted (some
minimum parts, so far, have been already implemented, and the result of the early
prototype will be showed in the first Demo Review). It contains the different elements
that will compose the aforementioned component. In addition, several elements used
and produced by the Deployer are included, such as the DAM and the
DeployerNotificationEvent.

DAM | Deployer 1 | DeployerNotification
E— | » Event
| | |
DeployerEngIneAdapter| LiveModel |
A— |

DeployerEngine |
| s j

ApplicationComponent

CloudAdapter |
| I
Adapter1 Adapter2

ConcreteCloud ’ ConcreteCloud ‘ Component | Relation
J

Figure 5. Run-time prototype. Deployer module

It is worth mentioning the current version of SeaClouds relays on Brooklyn as deployer
engine, that is in charge of distributing the applications’” modules over different
locations (clouds, local or remote VM, etc). In this regard, our intention is to add
several features to Brooklyn in order to widen its capabilities to fulfill the goals of
SeaClouds. So far, Brooklyn only supports Java applications but, although Java is a
language widely used in cloud applications, SeaClouds includes as one of its goals
support for other languages, for example PHP. In Deliverable D5.4.1, we describe the
architecture to add PHP support to Brooklyn. We have based our development on the
Brooklyn structure, as we have mentioned above, to take of advantage of current
Brooklyn management mechanisms. Therefore, please, refer to that document for the
implementation details of the SeaClouds early prototype.

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES
2.3.1 Live Application Model

The live model includes the information present in the Deployable Application Model,
plus some important extensions:

e Sensor values

e Policies

e Additional entities (if creation of some entities results in children)

e What effectors (operations) are available, e.g. is migrate supported?
All aspects of the live model are exposed through a REST APl where entities can be
navigated, and all current information about children, sensor values, and policies can
be accessed. By assigning UID’s as part of the deployable model, these ID’s can be
tracked in the live model and live information about the application modules can be
accessed, as needed, by the planner or by an operator.

2.3.2 Post-deployment strategy

The Deployer manages the application once it has been deployed (see Figure 6). It
should be noted that the migration task is one the most complex features of the
project life-cycle. Although it is briefly presented here, it is presently an ongoing work,
and it will be presented in more detail in a next deliverable, D4.3, on month M16.

Dashboard
A 4 [
Deployer
Deployable
Application
Model Deployer API
3 Reconfiguration
Reconfiguration I
2 Confirmation Reconfiguration
Reconfiguracion DAM
Request L
| Deployer Engine
Planner
» Live Model
[Cloud adapters Update
Planner API]
1
Constraint
violation
A
Monitor
[Monitor API]
5 Migration
Appllcatlon
Component
Appllcatlon Appllcatlon
Component Appllcatlon Component
Component

Figure 6. Deployment strategy - Interaction between modules

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES

As Figure 6 shows, the Deployer is in charge of migrating the modules over the
different cloud providers and it contains the necessary mechanisms to manage the
target cloud services for distributing the application component. When an application
is deployed, the live model is built and the Monitor module begins to check its status
using the API (as it is explained in the Monitor Section, Section 3).

When a constraint is violated, the Monitor triggers an event to manage this issue; it
could produce (among others) a policy reconfiguration (e.g. add a server to minimize a
response time) or a migration of a component. In the second case, the Monitor sends
a notification to the Planner to replan (Deployable Application Model Configuration)
the application distribution. The Planner gets the current application distribution
status from the Live Model using the Deployer API. The Planner uses that information
to generate a replan that contains the necessary information to migrate the
application components over different cloud providers. Please note that the
aforementioned components redistribution does not modify the application
components dependencies, so it does not affect to the application topology.

Then, the Planner sends the replan to the Dashboard, for the user to validate it.
Afterwards, Deployer Engine receives the replan, again through the Deployer API.
Following, the replanning process migrates (relocates) the necessary application
components to mitigate the constraint violation that triggered this chain of events.

seacLoubDs

AGILITY AFTEr DePLOYMEeNT

D4.1 Definition of the multi-deployment and
monitoring strategies

Modelling Planning Controlling

3. Monitoring process

In this section, we propose an initial approach for the Monitoring architecture,
describing its elements and the responsibilities assigned to the Monitor component.

3.1 Monitoring Architecture

Following the SeaClouds Initial Architecture presented in Figure 1, the Monitor
component is in charge of retrieving the monitoring data from deployed applications,
making it available to the rest of the components in SeaClouds. Also, it is responsible
for the control and enforcement of QoS properties and SLA, as well as forwarding
violations of these properties to the interested subscribed modules. The retrieved data
and related information must be completely available through the Monitor API. In
Figure 7 we can see the main layout for the components that constitute the Monitor.

Monitor

[Monitor API

T

Register Expose
application monitoring

l data
I

Register)
policy & Check Policy

subscribe Values status

v 4 |

Monitoring Retrieve Monitoring QoS Policies Trigger
Connector data Manager & Analysis alert
[
Store ?
Monitoring data Analyze
agent) |

Cloud-managed
systems

Persistent data storage

Figure 7. Monitoring architecture diagram

As shown in Figure 7, the Monitor functionality is focused on the Monitoring Manager,
which acts as a registry for new applications deployed and it also has the necessary
mechanisms to retrieve the data generated from the Monitoring agents, to make it
publicly available through the Monitor APl and to store it for later usage and analysis.

Monitoring data and QoS properties can be generated from the different layers that
compose the deployed applications, composing a wide family of metrics that shapes its
current state (in Annex A, a list of default metrics and user-defined properties is given).
Moreover, due to the different nature of the software layers found at applications,
many monitoring tools and infrastructure can be found. This architecture presents an
abstraction layer over those tools, using several Monitoring Connectors as translation
and routing mechanisms, in order to adapt metrics and properties from the different
sources (we denote them as Monitoring Agents) into the internal Monitoring model.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

The Monitor is also responsible for the creation and management of analysis
mechanisms, such as rules or policies, that operate over the data that are being
retrieved. It will allow external agents to subscribe to notifications on rules violations.

3.2 Monitoring Manager

The Monitoring Manager holds the necessary logic to coordinate the elements inside
the Monitor component. The main task that the Monitoring Manager needs to
perform is to route the monitoring data, such as sensor values, from the deployed
applications in SeaClouds to the Monitor API.

Also, in order to provide records of previous information, the Monitoring Manager is
connected to a Persistent Data Storage that allows it to track the evolution of the
sensors’ values.

3.3 Monitoring Connector

The Monitoring Connector translates the proprietary application monitoring service
into SeaClouds standard metrics. This allows us to use different ways to connect to a
data source. By using different connectors we can monitor from large application
servers to a single Apache instance (see Figure 8).

—

SeaClouds

ram-usage: "©.235", Monitoring manager

"p poggw JSON
cpu-usage: "0.677

Connector

}

Socket
Connector

Brooklyn
Connector

JSON Monitoring Agent

Socket Monitoring Agent

Brooklyn Monitoring Agent

Figure 8. Monitoring Connector Example

3.4 Monitoring Agents

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

The Monitoring Agents are the main providers of raw sensor values, like the average
CPU usage, or the average response time (Figure 9). The data parsing into SeaClouds
objects will be done by a specific Monitoring Connector that will serve as a routing
point that allows including this information as available data in the Monitor module.

{

- database1l: {
status: "Connected”,
connection_time: "©.00018191337585449218750",
inser_log_time: "©.081504206657409667968750",
analytics_time: "0.00101685523986816406250",
update_log_time: "0.00021004676818847656250"
¥
- request_analytics: {
- minute: {
seconds: "6@",
avg_response_time: "1.376749992",
max_response_time: .75350",
request_count: "2,
player_count: "1"

N

¥
- hour: {
seconds: "3600",
avg_response_time: "1.376749992",
max_response_time: "2.75350",
request_count: "2",
player_count: "1"

}s

Figure 9. E-xampl-e of monitoring data provided by a Monitoring Agent

Then, the concept of agents is an abstraction layer for all the providers of any kind of
monitoring data. Brooklyn will be one of them, having a Brooklyn-connector to route
the Brooklyn sensors into SeaClouds. Another example of agent could be also a single
web service which returns data directly into SeaClouds.

In practice, the Monitoring Agents will be composed of different types of service
endpoints that supply any kind of information coming from every level of the
application deployed, from low level QoS properties, such as “average disk usage” to
higher level performance metrics or even specific properties like database-related
“insert query response time”. This approach creates homogeneity over the diverse
nature of properties, simplifying any analysis task related to them.

It is worth mentioning, no more explanations are provided in this document about the
Monitoring mechanism implemented, since they are detailed in Deliverable D5.4.1.
That document describes the work done for the main Monitoring Agent that is
considered at the point of the first prototype, which is mainly implemented by
Brooklyn, acting as a management entity over the deployed applications. The objective
is to provide Brooklyn with the ability to create user-defined sensors that will make
HTTP requests to a JSON-based service that will provide monitoring information. In
order to implement this functionality, some Brooklyn mechanisms have been extended
and others have been generated. The contents of this contribution and the different
mechanisms in which it relies on are explained in D5.4.1. There, are described the

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng Strategles

mechanisms used to retrieve the information generated in different kind of services
that generate data, usually related to application metrics monitoring. We could
distinguish two big approaches on maintaining and updating this information:
notifications and feed mechanisms. While the first one relies on a subscribe and notify
mechanism working on events changes, the second one requires a periodic request or
polling over some service. According to the polling approach that Brooklyn, as a
Monitoring Agent, the different existing mechanisms, also are called Data feeds.

3.5 QoS Policies & Analysis

This component will be in charge of managing the monitored data by performing some
minor analysis and creating mechanisms (such as policies or rules) that will perform
QoS-level evaluations. External components (e.g. Planner module or SLA service) will
be able to create policies and to subscribe to events generated by them.

Policies will perform a simple and direct analysis on the actual state of the system, by
constantly checking the value of necessary metrics. This kind of analysis will consist in
the evaluation of a simple property (e.g., metric_value {operator} threshold) that is
built over the monitored metrics. More advanced or complex analysis can be
performed by using the events generated by policies or by querying the Persistent
Data Storage system.

3.6 Persistent Data Storage

The Persistent Data Storate module defines the Persistence Layer used by the Monitor
module to provide the retrieved information within certain periods of time. Stored
data can be used by the QoS Analysis element to perform advanced analysis over the
data stored on it and also by external components, such as SLA Service, through the
Monitor API.

While this layer will keep track of the information retrieved by the Monitoring Agents,
the need of storing a complete evolution of all the metrics can cause several problems
related to excessive information storage. In any case, the Persistent Data Storage will
maintain a record of the events generated by the QoS Policies and general information
about the Monitor module as well, since this information could be used by the SLA
Service to perform necessary QoB properties enforcement.

3.7 Monitoring Strategy

Figure 10 shows an overall diagram of the interaction between the Monitor and the
rest of the modules in SeaClouds.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitoring Strategles
SLA Service
Expose Subscribe 9
Register Application moniloring to policy T;"g;%er
Planner 4 data 8 |
| v |
1 > QoS Policies Aerts—3 ©
Start Add X Monitoring Manager — & ©
plan on. Agent_| | Analysis 2
T=
, ©
6 7 o
Connectto SeaClouds
Deployer agent Metrics
h 4 |
Deployment Internal
. dj‘:“;'{fnyem Monitoring Connector
2
Monitor

Application

Figure 10. Monitoring strategy - Interaction between modules

The registration of a new application into the SeaClouds context is one of the most
useful processes to exemplify how monitoring data are managed among components.

The monitoring process starts once the target application enters the deploying phase.
At this point, the Deployer component will notify the Monitoring Manager, through
the Monitor API, registering the new application in the Monitoring Manager. The
registration process will require information about the Monitoring Agent in use, so
that metrics can be collected and exposed to the rest of the SeaClouds modules by
using Monitor API.

In Figure 11, an initial class diagram for a run-time prototype is described. It shows
how the relations among components are established, according to the monitoring
strategies explained in the previous section, including the element introduced at the
initial architecture, such as MonitoringAgents, MonitoringConnectors and
MonitoringManager. In the next deliverables this information will be completed with a
more detailed description about the working implementation. Note that, as
aforementioned, in Deliverable D5.4.1, we present the HttpSensor support for the
Monitoring Agent used in our first prototype, where we based our Monitoring
extending the mechanisms used in Brooklyn.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DEPLOYMENT

Modelling Planning Controlling monitoring Strategles

Application | __] MonitoringManager |

| H 4 I
\ |

. H Policy
. MonitoringConnector
Component |
| ,]

b MonitoringAgent | Metric

MetricCatalog

DataValue

|
I—

Figure 11. Run-time prototype. Monitor module

seacLoubDs D4.1 Definition of the multi-deployment and
monitoring strategies

Modelling Planning Controlling

4. SLA Service

In the context of the SeaClouds project, the SLA Service enables the Service Level
Agreements (SLA) management of business-oriented policies. Firstly, it represents the
component responsible for generating the formal documentation describing electronic
agreements between the parties involved in the process: customers, application
providers and cloud providers.

Moreover, at runtime, the SLA Service is in charge of supervising that all the
agreements (SLA guarantees) are respected by assessing the business penalties (QoB:
Quality of Business) associated with the fulfillment of these non-functional properties
(some examples are provided below).

The SLA policies are based on WS-Agreement specification, which defines schemas for
SLA Templates and SLA Agreements (look at Annex B).

However, in the scope of this project, SLAs do not aim at representing a contractual
relationship between the customers consuming virtualized cloud resources and the
vendors that provide them. SLAs describe the service that is delivered, the functional
and non-functional properties of the resource, and the duties of each party involved.

Figure 12 gives a detailed overview of the software components belong to the SLA
Service and how they are related to other SeaClouds services.

SLA Service
.......... Core
Repository
templat
w Assessment
Gos
. 1 violations l penalties l
Historical : :
- SLA / [Qs) .
O?(s;%rlv)er *| Manager | viotations Monitoring
4 :

| Planner } > SLA
Generator

Runtime
Observer (GUI)

Figure 12. SLA Service architecture diagram

SLA Generator is a RESTful WebService that performs the automatic generation of SLA
agreements (compliant with the WS-Agreement specification) on behalf of Cloud

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES

providers, interacting with the SeaClouds planner component. The agreement will rely
on the description of offerings and the QoB policies specified by the application
provider during the cloud resources matchmaking phase as well as the resource
capabilities advertised by the cloud provider.

The SLA Manager is a RESTful WebService as well. This component is mainly in charge
of virtualizing the persistent layer as a WebService, allowing it to manage (remotely)
SLA Templates and SLA agreements, storing them in a repository, retrieving and
updating them. It also receives the QoS violations from the monitoring service and
forwards them to the Assessment component.

The implementation of the interfaces is suggested by WS-Agreement and will be
detailed in the Deliverable D4.2.

The SLA Manager (see Figure 13) supports the following features:
e To create, update, delete and obtain Agreements.

To create, update, delete and obtain Templates.

To obtain, start and stop Enforcements.

To create, update, delete and obtain Providers.

To obtain Violations.

On the other hand, it provides the logic to filter information according to some
parameters, such as:
e Agreements that can be filtered by the specific provider.
e Templates that can be filtered by the specific provider or resource.
e Violations that can be filtered by agreement-id, service name, range of dates
(from, until) or a provider.

SLA Repository represents the SLA persistent layer. It provides useful views to manage
the persistence of SLA Templates, agreements and their relationship. Moreover, it
provides a place where QoB Violations are stored and retrieved together with the
relative business penalties. The following picture depicts the first early version of the
SLA Repository data model, also more explained in detail in Deliverable D5.4.1.

seacLoubDs D4.1 Definition of the multi-deployment and
monitoring strategies

Modelling Planning Controlling

EnforcementJob
pnadlec
astExecuted
Breach
~ PateTime
(ZnetrichName
lue
- GuaranteeTerm al
reement ’
Provider EendceMame >)
Consumer 1 BeniceScope
puic & koreementid S»yanatiexpiName
hame ExpirationDate pustomSenicelevel
Slatus 1 '
1 Violation
bule
J EericeName
\ S eniceScope
Template Policy ﬂ‘rv‘»e'rrn(:ua--w
atetime
e pount prpectedvalue
providers nterval pctualvalue
mporance

Figure 13. Support of the SLA Manager

Finally, the Assessment component is a library component in charge of supervising
that the QoB policies specified in the agreement are respected. It processes all
measurements related to the execution of a business application sent by the
monitoring service. It checks whether the measurements are within the thresholds
established in agreement for QoB metrics. Whenever the execution of the business
application does not satisfy these conditions, the component makes use of policies to
take appropriate recovery actions. Moreover it may notify any observer (like an
accounting component) of raised penalties.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monito ring StrategIES

5. Nuro (early) Case: SeaClouds in action at Run-time

In order to illustrate SeaClouds at run-time (deployer, monitoring, and SLA), we use an
early version of the Nuro Case study, more detailed in Deliverable 6.3.1. The Nuro
application is structured into a PHP module for the business logic, and a MySQL
module as database (i.e., they are entities), as shown in Figure 14.

) Database connection
PHP Module J > Database

Module

Figure 14. Nuro case application modules

A possible deployment of the modules of the Nuro case application is presented in
Figure 15.

m NuroCaseStudy
- (PHPModule)

A 4

/ ApacheWebServer

(ApacheWebServer)
Apache i

Nuro-DB
(MySQL-RDBMS)

v v

Amazon_EC2 Bl
amazon (Amazon_EC2) (IBM_Web_Sphere)

Figure 15. Representation of the Concrete Deployment of the modules of the Nuro (early) Case Study

Once the application is described through the Application Model, it is sent to the
Planner. The Planner uses the data obtained by the Discoverer component to select
the target cloud services according to the defined metrics (for the Nuro Case, see
Tables 4 and 5 below) and other application requirements. Then, after generates the
Abstract Deployment Plan (ADP), the Deployable Application Model (DAM) is
composed, which contains the deployment instructions (see Deliverable D3.1, where a

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monito ring StrategIES

more specific explanation about the generation of the ADP is given). Below, a possible
DAM example is shown:

name:PHPHelloWorld
services:
-serviceType:entity.webapp.apache.ApacheServer
name:ApacheServer
location:aws-ec2:us-west-2
brooklyn.config:
http_port:80
app_git_repo_url:
https://seaclDem:seaclouds@bitbucket.org/seaclDem/nurocasestudyphp5-5.git
db_connection_file_config: config/config.php
db_connection_config_params:
g_DatabaseHost:formatString("%s",component("db").attributeWhenReady("host.address")
)
g_DatabasePort:component("db").attributeWhenReady("mysql.port")
g_DatabasePassword:component("db").attributeWhenReady("mysql.password ")
g_DatabaseUser: root
brooklyn.initializers:
- type: brooklyn.entity.software.http.HttpRequestSensor
brooklyn.config:
name: nuro.analytics_time
uri:formatString("%s/sensor.php",component("apache").attributeWhenReady ("
host.ad dress"))
jsonPath: $.databasel.analytics_time
targetType: double
-serviceType:entity.database.mysqgl.MySqlNode
id:db
name:MyDB
location: hpcloud-compute:az-1.region-a.geo-1

This DAM describes a PHP entity and a MySQL database, both deployed and configured
by the Deployer Engine, which distributes the applications modules over the cloud
services which are pointed in the DAM. In this case, the web application is deployed
using AWS service (aws-ec2:us-west-2) and the database is built over HP service
(hpcloud-compute:az-1.region-a.geo-1).

Once the application is distributed, the Deployer sends an event to the Monitor. This
event triggers a synchronization process between the Deployer and the Monitor, to
carry out the application monitorization. Figure 16 shows a brief example of the
process described so far.

seacLoubs D4.1 Definition of the multi-deployment and [N

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monito ring StrategIES
Dashboard
Confirmed Deployable 4
Deployable SLA Service Appllication Model
Module Application 4
1 Profile Model l
NuroCS NuroCS I 6 Deployer
Subscribe Trigger
to policy alerts
l | 7 Deployer API
v Monitor |
DAM deployment
b |
Planner
Synchronization Dep'oyer Eng'ne
Event
S | —»| Live Model
‘ Cloud adapters Creation
Optmized Cloud
Providers Request

|

Discover

Application Application
Component Component

P ——

Figure 16. Nuro (early) Case Study deployment diagram

Nuro’s monitoring requirements include several application-level and database
metrics, such as execution times for different kinds of simple and complex queries (see
Figure 17). In this flow, the SLAs will be connected to the Monitor (as depicted in
Figure 10), checking the QoS violations, and describing the service that is delivered, the
functional and non-functional properties of the resource, and the duties of each party
involved.

The main source of monitoring data is implemented by a PHP service that exposes this
information as a JSON document. The mechanism used to retrieve this information and
to make it available to the rest of SeaClouds components is an element of Brooklyn
(Brooklyn Monitoring Agent, as was already mentioned in the Monitoring Agents
section), by making use of HttpFeeds and the necessary sensors that will constantly
update the value of monitoring data generated by the Nuro Monitoring service.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng Strategles

A T A
Metrics
/ Nuro : Brooklyn :
Monitoring : Monitoring |
service : Agent :
PHP
MySQL
Modules Node

N)

Figure 17. Nuro case-study monitoring strategy

The metrics generated by Nuro Monitoring service are the following:

Database

Name Type Description

status String Database connection status.

connection_time Double |Elapsed connection time to database.
insert_log_time Double |Elapsed time inserting log to database.
analytics_time Double |Elapsed time on generating the analytics queries.
update_log_time Double [Elapsed time updating log to database.

Table 5. Nuro metrics. Database

Request analytics

Name Type Description

avg_run_time Double [Average PHP run time.
max_run_time Double |[Maximum PHP run time.
avg_request_time Double [Average request duration time.
max_request_time Double [Maximum request duration time.
request_count Integer |Total number of requests.
player_count Integer |[Total number of players.

Table 6. Nuro metrics. Request analytics

(“Request analytics” metrics are generated for different periods of time: every minute,
hour and day.)

At the SLA level, we propose two levels (or layers) of agreements:
1. Application Provider - Cloud Provider layer
2. User - Application Provider layer

Application Provider - CloudProvider layer

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

In this level, the provider is the cloud provider, and the consumer is Nuro. This means
that Nuro expects the cloud providers to offer some guaranteed service.

There will be one agreement per module. In Nuro's case study, two agreements will be
considered (one for the PHP module, and another one for the MySQL module).

The QoS in this kind of agreements should only refer to metrics that are independent
from the other modules. E.g. runtime(php) = runtime(total) - runtime(mysql)

Example of agreement, with the following desired QoS constraints (constraints to be
fulfilled by the CloudProvider):

e runtime(php) < 1000ms

e availability(php, day) > 0.99

® requests_minute_worker < 400

The Monitoring Manager evaluates all these constraints.

A proposed agreement based on WS-Agreement specification is shown below:

Agreement:
Agreementld: nuro-php-0001
Name: Agreement for Nuro Case Study
Context:
ServiceProvider: AmazonAWS
Customer: NURO
Terms:
- ServiceReference: { Name: nuro, ServiceName: default, Value: "http://nuro.seaclouds.eu” }
- ServiceProperties:
Name: gos_properties
ServiceName: default
Variables:
- { Name: AVG_RUN_TIME, Metric: "xs:double", Location: /sensor/avg_run_time }
- { Name: DAY_AVAIL, Metric: "xs:double", Location: /sensor/day_avail }
- { Name: REQUESTS_MINUTE_WORKER, Metric: "xs:double", Location:
/sensor/requests_minute_worker }

- GuaranteeTerm:
Name: "AvgRunTime"
ServiceScope: { ServiceName: default, Value: /game }
ServicelLevelObjective:
Target:
Constraint: AVG_RUN_TIME < 1000

- GuaranteeTerm:
Name: "Availability"
ServiceScope: { ServiceName: default, Value: / }
ServicelLevelObjective:
Target:
Constraint: DAY_AVAIL < 1000

- GuaranteeTerm:
Name: "Requests"
ServiceScope: { ServiceName: default, Value: / }
ServicelLevelObjective:
Target:
Constraint: REQUESTS_MINUTE_WORKER < 400

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES

The main purpose of the SLA Service is to handle QoB. Since it is not possible to impose
penalties to cloud providers, currenlty this layer only serves as a store of QoS
violations.

The violation of QoS constraints should result in recovery actions by the Deployer to
correct the situation.

User - Application Provider layer
In this level, the provider is Nuro, and the consumer is any Nuro's customer. This
means that Nuro offers the SLA agreement to their customers.

There will be one agreement per full application. The constraints in this kind of
agreement should only refer to observable metrics by the end user. For example, in
Nuro's case study, request times or availabilities.

The violations of these high-level constraints can be used in QoB rules.

The application provider can use the agreement of the frontend component in
Application Provider - Cloud Provider level as a template for generating an agreement
at this level, and modify the constraints if desired.

A QoB rule is defined like this:
e A constraint over a metric provided by sensors (e.g. runtime < 2000ms). A non-
fulfilled constraint is considered a breach.
e A time window where the number of breaches must be below a threshold (e.g.
5 breaches/day). If this time window is violated, a QoB violation is raised, and
the business values take place (discount, migrations, downrating, other
recovery actions...)

For example, considering the previous QoS rules whose metrics were suitable for this
level (constraints 1 and 2), the following QoB rules can be defined:
e QoB1
O runtime(request) < 2000ms
o 5violations/day
o 10% discount

O availability(day) > 0.99
o 10 violations/month
O migration

Using the previously defined QoB constraints, a proposed agreement is:

Agreement:

AgreementId: nurocasestudy0001

Name: Agreement for Nuro Case Study

Context:
ServiceProvider: NURO
Customer: any

Terms:
- ServiceReference: { Name: nuro, ServiceName: default, Value: "http://nuro.seaclouds.eu” }
- ServiceProperties:

seacLoubDs D4.1 Definition of the multi-deployment and VI
Modelling Planning Controlling monito ring StrategIES

Name: qos_properties

ServiceName: default

Variables:
- { Name: AVG_REQUEST_TIME, Metric: "xs:double", Location: /sensor/avg_request_time }
- { Name: DAY_AVAIL, Metric: "xs:double", Location: /sensor/day_avail}

- GuaranteeTerm:
Name: "AvgRequestTime"
ServiceScope: { ServiceName: default, Value: /game }
ServicelLevelObjective:
Target:
Constraint: AVG_REQUEST_TIME < 2000
BusinessValuelist:
CustomBusinessValue:
Policy: { Count: 5, Duration: P1D }
Action: 10% DISCOUNT

- GuaranteeTerm:
Name: "Availability"
ServiceScope:
ServiceName: default
Value: /
ServicelLevelObjective:
Target:
Constraint: DAY_AVAIL > 0.99
BusinessValuelList:
CustomBusinessValue:
Policy: { Count: 10, Duration: P1M }
Action: MIGRATION

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monitorlng StrategIES

6. Conclusions

In this deliverable we have presented the multi-deployment and monitoring strategies,
as well as the SLA service, as three of the main components of the SeaClouds
architecture.

Along the document we have described how the modules of the cloud application are
deployed in heterogeneous clouds, and how the monitoring service and the SLA
service are initialized and executed. A real use case, the Nuro (early) case is used to
illustrate the application of the strategies defined in this document. Also some
Annexes with some details on metrics and properties, as well related to the SLA
agreement have been presented at the end of the document. About the early
prototype, along the document, apart from present some design details, we have also
referred to Deliverable D5.4.1 where the implementations details are provided.

seacLoubDs D4.1 Definition of the multi-deployment and _

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng Strategles

Annexes

A. Default metrics and user-defined properties

The definition of properties and metrics gathered by monitoring agents may differ
depending on the tools and methods used for the generation of the properties and
also on the different nature of the agents. This problem can cause duplication and
inconsistency of rules and properties built over monitoring data.

In this section we define a set of metrics, based on general usage of different platforms
and applications, covering a wide range of commonly used properties. Monitoring
connectors will be in charge of translating and adapting the metrics provided by
different agents into SeaClouds’ own set of metrics when possible, and creating new
ones when these are not possible to adapt or the metrics are defined by the user itself
at application level.

We will classify these metrics according to the nature of systems being monitored,
going from low level layers to concrete application-based metrics.

Basic platform metrics

Java-based platforms (VM

metrics)

Name Type |Description

Used heap memory Long [Current heap size (bytes)

Init heap memory Long [Initial heap size (bytes)

Committed heap memory Long [Committed heap size (bytes)

Max heap memory Long [Max heap size (bytes)

Non heap memory usage Long |[Current non-heap size (bytes)

Current thread count Integer |Current number of threads

Peak thread count Integer |Peak number of threads

Start time Long [Start time of Java process

Up time Long [Uptime of Java process (millis, elapsed since
start)

Process CPU Time Double [Process CPU time (total millis since start)

Process CPU Time Fraction last Double [Fraction of CPU time used, reported by JVM
(percentage, last datapoint)

Process CPU Time Fraction Double [Fraction of CPU time used, reported by JVM

window (percentage, over time window)

Available processors Integer |Number of available processors

seacLoubDs D4.1 Definition of the multi-deployment and
Modelling Planning Controlling mOI’\ItOFIng Strategles
System load average Double |System load average for the last minute®.
Total physical memory size Long [Total physical memory size
Free physical memory size Long |Free physical memory size

Table 7. Java-based platforms metrics.

Machine level

Name Type Description

Uptime Duration |Elapsed time since machine started.
Load average Double |System load average for the last minute.
CPU usage Double |Current CPU load.

Free memory Long Current free memory.

Used memory Long Current used memory.

Total memory Long Current total memory.

Table 8. Machine level metrics

Server pool
Name Type Description

The number of locations in the pool that are
Available count Integer |unused

The number of locations in the pool that are in
Claimed count Integer |use

Table 9. Server pool metrics.

Database metrics

Database node

Name Type Description
Read pending Long Current pending ReadStage tasks
Read active Integer |Current active ReadStage tasks
Read completed Long Total completed ReadStage tasks
Write pending Long Current pending MutationStage tasks
Write active Integer |Current active MutationStage tasks
Write completed Long Total completed MutationStage tasks
Latency for thrift port connection (ms) or null if
Thrift port latency Long down
Thrift port latency in window Double |Latency for thrift port (ms, averaged over time

’The system load average is the sum of the number of runnable entities queued to the available
processors and the number of runnable entities running on the available processors averaged
over a period of time.

seacLoubDs

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling

D4.1 Definition of the multi-deployment and
monitoring strategies

window)
Reads per second last Double |Reads/sec (last datapoint)
Writes per second last Double |Writes/sec (over time window)
Reads per second in window Double |Reads/sec (over time window)
Writes per second in window Double |Writes/sec (over time window)
Table 10. Database metrics.

Web application servers metrics

Web Server

Name Type Description

Total accesses Long Number of accesses
Total KBytes Long Total traffic in KBytes
CPU Load Double |Percentage CPU load
Uptime Long Total up time (in seconds)
Request per second Double |Requests per second
Bytes per secoond Double |Bytes processed per second
Bytes per request Double |Bytes per request

Busy workers Integer |Number of busy workers
Idle workers Integer |[Number of idle workers

Table 11. Web server metrics.

Web Application Server

Name Type |Description

Request count Integer |Request count

Error count Integer |Request errors

Total processing time Integer |Total processing time, reported by
webserver (millis)

Max processing time Integer [Max processing time for any single request,
reported by webserver (millis)

Processing time fraction last Double [Fraction of time spent processing, reported
by webserver (percentage, last datapoint)

Processing time fraction in window Double [Fraction of time spent processing, reported
by webserver (percentage, over time
window)

Bytes received Long |Total bytes received by the webserver

Bytes sent Long [Total bytes sent by the webserver

Request per second last Double |Regs/sec (last datapoint)

Request per second in window Double |Regs/sec (over time window)

Table 12. Web application server metrics.

seacLoubDs D4.1 Definition of the multi-deployment and m

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng Strategles

Web Application Server Cluster

Name Type Description

Request count per node Double |Cluster entity request average

Error count per node Integer |Cluster entity request error average

Requests per second last per node Double |Regs/sec (last datapoint) averaged over
all nodes

Requests per second in window per node [Double [Regs/sec (over time window) averaged
over all nodes

Processing time fraction in window per Double |Fraction of time spent processing
node reported by webserver (percentage, over
time window) averaged over all nodes")

Total processing time per node Integer |Total processing time per node (millis)

Table 13. Web application server cluster metrics.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling m 0 n ito ri n g St rateg I ES
B. WS-Agreement

The SLA Service follows the concepts and XML structures for agreements and
templates that are defined in the WS-Agreement specification. There the agreement
template describes the service offer, and an agreement describes an instantiation of a
template associated to the customer. WS-Agreement (see Figure 18) specifies the XML
structure to define agreements and templates, and a two layers interface of web
services for operation. This implementation is focused on the XML structure, and
defines REST interfaces to operate.

The following text is a summary of the specification, obtained from [9], and slightly
modified to include QoB handling.

The WS-Agreement language defines the data types for expressing the content of an
agreement. This language is defined independently from the WS-Agreement protocol
and can therefore be used in a wide set of scenarios, for example with other protocol
bindings. It is defined in the form of XML schema and describes the data types and the
structure of the Agreement document, the Agreement Template document, and the
Agreement Offer document.

Agreement

Name

Context

Terms Compositor

Service Description Terms

Service References

Service Properties

Guarantee Terms

Figure 18. WS-Agreement

The above picture depicts the basic structure of an agreement. An agreement contains
an agreement identifier, its name, an agreement context and a term compositor with a
detailed description of the service to provide.

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mon ItOFIng StrategIES

The agreement context contains a set of meta data that is associated with an
agreement. First of all, the context provides information on the parties that created
the agreement. The context therefore contains two elements: Agreement Initiator and
Agreement Responder. The content of these two elements is not further specified.
They can contain an arbitrary, domain specific description of each party in order to
resolve them to real world entities. Such a description can for example be an endpoint
reference or a distinguished name that identifies the party in a security context.
Additionally, the agreement context associates each party with its respective role in
the agreement by specifying which party is the service provider and which is the
service consumer. By that, the involved parties in the agreement are identified and
bound to their roles. The agreement context may also contain an expiration time that
defines how long an agreement (and an associated service) is valid. The context should
also reference the template that was used to create the agreement. This is of
particular importance for the agreement offer validation process. Besides that, the
agreement context may contain any domain specific data.

In general, each term in WS-Agreement is identified by a term name. Service terms
additionally contain a service name. The service name allows the semantically
grouping of multiple service terms in an agreement. A single service in an agreement
can therefore be described by multiple service terms. Each service term describes a
different aspect of the service. Service terms can be distinguished into Service
Description Terms, Service References, and Service Properties.

Service Description Terms give a functional description of the service to provide.
Therefore, the service description terms contain a domain specific description of the
service. This can comprise a complete or a partial description. Since the WS-Agreement
is designed to be domain independent, the content of a service description term can
be any valid XML document. Both parties involved in the agreement (agreement
initiator and agreement responder) must understand the domain specific service
description, e.g. the XML schema for the domain specific language must be known to
both parties.

Service References provide a way to refer to existing services within an agreement.
This can be useful when a certain service quality should be provided for an existing
service rather than for a new one. Similar as in service description terms, service
references can contain an arbitrary XML document that describes the service
reference. Here the same rules and restrictions apply as for service description terms.

Service Properties are the last type of service terms. From an abstract point of view,
they provide a way to define variables in the context of an agreement. A variable
definition comprises a name, a metric, and a location. The location refers to a distinct
element in the agreement, e.g. by using an XML query language such as XPath. Service
Properties are used to define and evaluate guarantees in WS-Agreement.

Guarantee Terms are the second group of agreement terms. They provide the
required capabilities to express service guarantees in agreements, define how
guarantees are assessed and which compensation methods apply in case of meeting or

seacLoubs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling monltorlng StrategIES

violating the service guarantees. Guarantee terms consist of four elements: a Service
Scope, a Qualifying Condition, a Service Level Objective and a Business Value List.

Service Scope specifies which services in the agreement are covered by the guarantee.
Since a single agreement can comprise a set of different services, one guarantee may
apply to one or more services.

Qualifying Condition specifies preconditions that must be fulfilled before a guarantee
applies. Not all guarantees apply during the whole lifetime of an agreement. The
gualifying condition specifies the preconditions that must be met before a guarantee is
evaluated.

Service Level Objective (SLO) defines an objective that must be met in order to provide
a service with a particular service level or with a particular quality of business (QoB).
The QoB properties of a service are defined in the service description terms of an
agreement. These are the agreed service properties. At the service provisioning time
the actual QoB properties are derived from the service monitoring system. This service
level objective essentially defines how the agreed QoB properties are related to the
actual QoB properties. It defines a logical expression that can be assessed in order to
determine the fulfillment of a guarantee.

In the context of SeaClouds, the QoS properties are assessed as policies of the
Monitoring Service, which communicates the QoS violations to the SLA Service.

Business Value List defines the penalties and rewards that are associated with a
guarantee. WS-Agreement already defines a model to express business values for
guarantees. These predefined business values range an abstract importance of a
guarantee to arbitrary value expressions, such as Euro or US-Dollar.

seacLoubDs D4.1 Definition of the multi-deployment and

AGILITY AFTEr DePLOYMEeNT

Modelling Planning Controlling mOI’\itO ring Strategles

References

[1] Deliverable D3.1 “Discovery design and orchestration functionalities: first
specification”

[2] Deliverable D2.2 “Initial architecture and design of the SeaClouds platform”

[3] Deliverable D5.4.1 “Definition of the multi-deployment and monitoring strategies”.

[4] Deliverable D4.3 “Design of the Run-time Reconfiguration process” (to be delivered
on Mont M16).

[5] Deliverable D4.2 “Cloud Application Programming Interface”.

[6] Deliverable D6.3.1 “Case Studies Preliminary implementation”.

[7] BluePrint Description:
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-
applications/yaml-reference.html, CloudSoft, 2014.

[8] Brooklyn API: https://brooklyn.incubator.apache.org/v/0.7.0-
M1/use/api/index.html

[9] Guide to WS-Agreement Language:
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.htmi

