

SeaClouds Project
D3.1 Discovery, Design and Orchestration

Functionalities: First Specification

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-

based applications
Call identifier FP7-ICT-2012-10
Grant agreement no. Collaborative Project
Start Date 1st October 2013

Ending Date 31st March 2016

Work Package WP3, SeaClouds Design-Time modelling and orchestration
Deliverable Code D3.1
Deliverable Title Discovery, Design and Orchestration Functionalities: First

Specification
Nature Report
Dissemination Level Public
Due Date: M12
Submission Date: 10th October 2014
Version: 1.0
Status Final
Author(s): Michela Fazzolari, PengWei Wang (UPI); Francesco D’Andria

(ATOS); Elisabetta Di Nitto, Raffaela Mirandola, Diego Perez
(Polimi); Javier Cubo (UMA)

Reviewer(s) Francesco D’Andria (ATOS); Andrea Turli (Cloudsoft)

 2 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

 3 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Table of Contents
List of figures .. 4

List of tables .. 5

Executive Summary .. 6

1. Introduction ... 7

1.1 Glossary of Acronyms.. 7

2. Specification of Application Properties and Requirements 9

2.1 Application Model ... 9

2.2 Application Metamodel .. 10

2.3 Instantiation of the Application Metamodel into the NURO Case Study 15

2.4 Topology Model .. 16

2.5 Representation of Properties and Requirements into TOSCA 22

2.6 Nuro (early) Case: Topology Specification in TOSCA 29

3. Discovery of Capabilities and Services Featured by Cloud Providers 30

3.1 Definition of a General Cloud Profile Model... 30

3.2 Definition of the Cloud Profile Model in TOSCA ... 35

4. Planner Service ... 40

4.1 Matchmaking .. 40

4.2 Optimization .. 42

5. Preliminary Prototype Description .. 53

5.1 UML Class Diagram ... 53

5.2 API Design ... 55

6. Concluding Remarks ... 56

Annex: ... 57

A. Background on TOSCA ... 57

B. Analysis of Common Services Offered by Cloud Providers 61

C. Resource Allocation Strategies in Cloud Computing ... 67

References .. 70

 4 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

List of figures

Figure 1. Application Model lifecycle ... 9

Figure 2. Application metamodel ... 10

Figure 3. Application Model of the NURO case study .. 15

Figure 4. Nuro case requirement.. 29

Figure 5. TOSCA-compliant topology specification for Nuro Case in Winery 29

Figure 6. Cloud service models ... 31

Figure 7. General cloud profile model .. 32

Figure 8. Cloud profile model focused on IaaS services ... 33

Figure 9. Cloud profile model focused on PaaS services .. 34

Figure 10. Overall cloud profile model ... 35

Figure 11. Initial approach for the matchmaking process .. 42

Figure 12. Initial approach for the optimization process .. 44

Figure 13. Two-steps optimizer .. 45

Figure 14. Example of system properties provided in the abstract application model
and operational profile. .. 46

Figure 15. Example of options for each module .. 47

Figure 16. Local optimum found by the heuristic search ... 47

Figure 17. Alternative local optimum found by the heuristic search 48

Figure 18. UML class diagram of the Planner ... 53

Figure 20. TOSCA Service Template ... 57

 5 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

List of tables

Table 1. Glossary of acronyms .. 8

Table 2. The initial API design of the planner ... 55

Table 3. OpenShift pricing scheme for compute resources ... 62

Table 4. Heroku pricing scheme for compute resources ... 63

Table 5. Heroku pricing scheme for storage resources .. 63

Table 6. Common characteristics for compute resources ... 64

Table 7. Common characteristics for block storage resources 65

Table 8. Common characteristics for object storage resources 66

Table 9. Overview of related work ... 68

 6 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Executive Summary

This deliverable presents the first specification of the discovery, design and
orchestration functionalities of the SeaClouds platform, which includes the SeaClouds
discovery functionality, the SeaClouds formalism to specify properties and
requirements, the SeaClouds application topology model and the SeaClouds planning
policies.

The deliverable describes an application meta-model to specify properties and
requirements of an application, a TOSCA model used to describe the application
topology, an abstract model to represent capabilities advertised by cloud providers,
and also a possible mapping from the proposed models into TOSCA representations. A
preliminary description of the SeaClouds orchestration policies is presented, which
includes a matchmaking process and an optimization process.

Finally, an initial prototype design and description for the planner component is
provided.

 7 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

1. Introduction

The main objective of the SeaClouds platform is to allow a user to automatically deploy
her applications on multiple-clouds and to manage the application itself during the
entire lifecycle. This document is going to focus on the first step, thus analysing at
design time which are the inputs needed by the platform to decide where and how to
deploy a user application, by guaranteeing at the same time the satisfaction of user
requirements.

In the next two sections, the inputs needed by the platform are analysed. In section 2,
the user input is taken into account and a meta-model is proposed to represent all the
information needed to describe a user application. In this model, concepts like
application module, application topology, user requirements, etc., are described. The
last part of this section presents a possible mapping of the proposed meta-model into
TOSCA concepts, in order to promote the standardization of cloud service descriptions.
It must be highlighted that the meta-model is quite general and can be reused in case
the TOSCA standard should turn out unsuccessful.

Section 3 deals with the discovery of capabilities and services offered by cloud
providers. To this end, a cloud meta-model is proposed to provide a uniform
description of these capabilities and services. As in Section 2, we also propose a
possible mapping of the cloud meta-model into TOSCA concepts.

In Section 4, we give a first specification of the planner component, which is in charge
of analysing the user input and finding a suitable allocation of the application modules
on multiple cloud services, by guaranteeing that user requirements are satisfied. The
planner service is composed of two consecutive steps, a matchmaking process and an
optimization process. The output produced by the planner component includes all the
information needed to deploy a user application on multiple clouds.

Finally, in Section 5, a description of a first prototype of the planner component is
given, which implements the concepts described so far.

In order to enhance the readability of this deliverable, some additional but still
important concepts and analysis, like the background on TOSCA, analysis of common
services offered by cloud providers, and existing resource allocation strategies in cloud
computing, have been moved to a set of appendices, which can be found at the end of
the document.

1.1 Glossary of Acronyms

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

SLA Service Level Agreement

TOSCA Topology and Orchestration Specification for Cloud Applications

CAMP Cloud Application Management for Platforms

GUI Graphical User Interface

API Application Programming Interface

 8 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

APP Application

DB Database

WP Work Package

QoB Quality of Business

DAM Deployable Application Model

PaaS Platform-as-a-Service

XML Extensible Markup Language

HTTP HyperText Transfer Protocol

SSL Secure Sockets Layer

SLO Service Level Objective

KPI Key Performance Indicator

PHP Hypertext Preprocessor

YAML YAML Ain't a Markup Language

ADP Abstract Deployment Plan

VM Virtual Machine

UML Unified Modeling Language

CSAR Cloud Service ARchive

USB Universal Serial Bus

RAID Redundant Array of Independent Disks

SAN Storage Area Network

FAT File Allocation Table

NTFS New Technology File System

DBMS Database Management System

OS Operating System
Table 1. Glossary of acronyms

 9 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

2. Specification of Application Properties and Requirements

This section describes the initial input of the SeaClouds platform given by a user. To
this end, an application meta-model is proposed to represent all the related
information.

2.1 Application Model

The main purpose of the application model is to keep a track of the constituents of a
multi-cloud application during its life-cycle through the SeaClouds platform. Figure 1
shows the application model lifecycle of the platform. The initial input for SeaClouds is
an abstract application, which is described through an Abstract Application Model. This
model contains a definition of all Modules of the application and of the requirements
these modules pose on the lower level Modules or Services they are based on.

The task of the SeaClouds Planner is to transform the Abstract Application Model into
a Deployable Application Model. In this last model all leaves application Modules are
either mapped into some deployable Artifacts or they are associated to some Concrete
Services that can offer the functionality required by the Modules. In other terms, the
Deployable Application Model contains the information needed by the SeaClouds
Deployer to deploy, configure and execute the application on some clouds (this will be
more detailed in Deliverable D4.1 related to the runtime phase).

During execution, the Live Application Model is the one that keeps track of the status
of all application’s Modules and that is used for supporting the dynamic evolution of
the application (also described in Deliverable D4.1). Figure 1 shows a UML activity
diagram that describes the transitions from one Application Model to the other.

Figure 1. Application Model lifecycle

 10 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Abstract, Deployable and Live Application Models are all defined according to the
metamodel defined in the next section.

2.2 Application Metamodel

Figure 2 shows the main constituents of the Application Metamodel. An example of
instantiation of such metamodel is presented in Section 2.3.

Figure 2. Application metamodel

The central element of the metamodel is the Module. An application can be
constituted by a simple module (the Base Module) or, more frequently, by a
composition of various modules. This second possibility is represented by the concept
of Composed Module that can be constituted by various Modules, either Base ones or
Composed. Thus, a Composed Module has always associated a Topology that describes
the way the constituent Modules are connected together. A detailed definition of the
Topology description is given in Section 2.4.

A Base Module can either be implemented by some Artifact (more details on Artifacts
are given in Section 2.2.1) or by some Concrete Service. In the first case, the
configuration, deployment, runtime management of the Artifact is under the
responsibility of the SeaClouds Deployer. In the second case, the responsibility of the
Deployer is to create the right communication channels between the Module and the
Concrete Service and the actual interaction between the two is in charge of the
application itself.

A Concrete Service is typically a specialization of an Abstract Service. Abstract Services
are made available to the SeaClouds Planner subcomponent called Matchmaker. This
is in charge, during the planning phase, of mapping Requirements defined for some
Module(s) into Abstract Services.

 11 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Requirements can be of various kinds and are categorized as follows. They can be
either Technology Requirements (e.g., the usage of a specific Programming Language
or of a specific Abstract Service) or they can be Quality Requirements. A detailed list of
the Quality Requirements we consider is provided in Section 2.2.2. Orthogonally to this
classification, Requirements are Monitorable Requirements when it is possible to build
proper sensors that allow to acquire data concerning their fulfillment.

At runtime, a Module has associated a Module Status, which includes any runtime
information associated with the Module itself. Moreover, the Module can have
associated a Management Policy. This defines the actions to be executed when some
condition happens. Considered conditions can predicate on Monitorable Requirements
or on other characteristics of the multicloud application.

As discussed in Section 2.1, the Application Metamodel is used in the three different
models described in Figure 2.

The Abstract Application Model typically contains Modules and Requirements. The
Base Modules may be associated to Artifacts or to some Concrete Services, but this is
not mandatory at this level. Other information is filled in at the Deployable and Live
Models level. More specifically, in the Deployable Model all Base Modules are
associated to specific Artifacts or Concrete Services. Moreover, the entire set of
Requirements to be considered is finalized and Management Policies are defined.
Some of these data may vary at runtime, as a result of Management Policies. For
instance, the Concrete Service associated in the Deployable Application Model to some
Base Module may change dynamically.

The Module Status and the Policy Status are data specific of the runtime and vary
depending on the execution.

In general, the Live Application Model is stored within the Deployer. This last one can
be invoked by the Planner when this is required to replan the application. This can be
done following the Deployer strategy defined in Deliverable D4.1 (Section 2) through
the query interface offered by the Deployer as explained in Deliverable D4.2 about the
API, Section 3.3.

2.2.1 Artifact

In SeaClouds, an Artifact is anything that can be installed on and/or configured in the
Cloud. The Artifact has associated a Configuration Script that describes the way it
should be configured to work as required by the application that is exploiting it. Finally,
the Artifact has an Artifact Status that can be deployed when it is ready for execution
or Undeployed in the opposite case.

 12 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

2.2.2 Quality Requirements

Quality Requirements specify criteria that can be used to judge the operation of a
system, rather than a specific behavior. This should be contrasted with Technology
Requirements that define specific constraints on behavior or functions.

Terms for Quality Requirement are, "quality attributes", "quality goals", "quality of
service requirements" and "non-behavioral requirements". Example of specialization
of Quality Requirements are listed below.

Location
The concept Location describes where a Module will be located on top of some
hardware infrastructure providing the cloud resource. A Location can be classified into
Region or SubRegion. A Region is a macro area corresponding to a continent, while a
SubRegion corresponds to a subcontinent or a geographic area within a continent, so a
SubRegion is always contained in a unique Region.

Security
The concept Security describes the security requirements of the Modules belong to the
Application. The isolation of the instance where the Module runs or the use of the SSL
protocol are example of Security requirements.

Cost
For instance for PaaS, the concept Cost describes application requirements in terms of
cost. Together with the concept QoS will help the Planner to arrange the
optimum/sub-optimum concrete plan to maximize the relation QoS of the App / Cost
of the App.

The cost is expressed as Gold, Silver, Bronze + a fixed price; the fluctuation of the final
Module cost is between the fixed cost and the fixed cost + fixed cost * X;
X = 100 % (Gold)
X = 50 % (Silver)
X = 20 % (Bronze)

Example:
a) Cost Policy = Gold; fixed price 100 = Fluctuation of the cost Module is between 100
and 200; Maximize and economy of the Module at runtime.

b) Cost Policy = Silver; fixed price 150 = Fluctuation of the cost Module is between 150
and 225 and Maximize the performance of the Module at runtime.

The Range Cost is described by a Lower_bound and an Upper_bound;

WorkloadToBeHandled
WorkloadToBeHandled models the characteristics of the workload, in terms of types
and number of requests per seconds over a certain period of time that the application
should be able to fulfill.

 13 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Quality of Service
Quality of Service (QoS) refers to a level of service that is satisfactory for the actor
consuming the cloud resource. In the context of SeaClouds the application providers
and final users.

QoS terms are associated to metrics and a Service Level Objective (SLO) and they are
used to make a first matchmaking analysis of the best-fit cloud service and configure
“a smart” monitoring service that will assess the terms at runtime. Typical SLO could
be: [ResponseTime < 100 ms; MemoryConsumed > 100 Mb; ServiceAvailability > 90%].

The unfulfillment of the QoS terms could generate a scaling-up action (of the cloud
resources) or even the activation of a migration procedure. For instance, [if the
ServiceAvailability > 90% scaleup].

Quality of Business
The Quality of Business (QoB), unlike the QoS, has direct business implications on the
economy of the application running on the cloud.

QoB terms are associated to metrics and a service level objective and they are used to
make a first matchmaking analysis of the best-fit cloud service and to generate SLA
agreements that will be evaluated at runtime. The unfulfillment of the QoB terms
could generate rewards like discounts or actions with business implication.

An example of QoB may be : [if in 30 minutes three violation of the SLO ResponseTime
< 100 ms have been raised, it will be generated a discount of the 30% on the price of
the service].

VariableSet (Metrics definition)
VariableSet (from WS-Agreement specification) contains the expressions that refer to
aspects of the service(s) subject to the guarantee. For instance, metrics for availability
and response time must refer to named concepts (availability, response time) and
must be declared as named variables that can be used in assertions. The semantics of
those variables must be defined to interpret the condition expression.

Example:

<wsag:VariableSet>
<wsag:Variable wsag:Name="Availability" wsag:Metric="./resources/metricXML:Percentage">

<wsag:Location>\\Availability</wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name="InitCost" wsag:Metric="./resources/metricXML:Cost">

<wsag:Location>\\InitCost</wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name=”bandwidth” wsag:Metric=”job:networkBandwidth”>

<wsag:Location>//JobDescription/Resources/IndividualNetworkBandwidth/Exact

</wsag:Location>
</wsag:Variable>

 14 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

</wsag:VariableSet>

Service Level Objective
Service Level Objective (SLO) defines an objective that must be met in order to provide
a service with a particular service level or with a particular quality of service (QoS) or
Quality of Business (QoB). At the service provisioning time, the actual QoS/QoB
properties are derived from the service monitoring system. This SLO essentially defines
how the agreed QoS/QoB properties are related to the actual QoS/QoB properties.

It defines a logical expression that can be assessed in order to determine the
fulfillment of a guarantee.

The Service Level Objective element is expressed as an assertion over service
attributes and/or external factors such as date, time following the GRAAP WS-
Agreement Specification [23, 24]. However, most often a Service Level Objective is
expressed as a target for a Key Performance Indicator (KPI) such as average response
time, completion time, availability, etc. Hence, the core specification provides a simple
and/or complex expression structure for specifying a target for any domain specific
KPIs.

<wsag:ServiceLevelObjective>
<wsag:KPITarget>

<wsag:KPIName>xs:string</wsag:KPIName>
 <wsag:Target>xs:any</wsag:Target>
</wsag:KPITarget>
<wsag:CustomServiceLevel> … </wsag:CustomServiceLevel>
</ServiceLevelObjective>

● /wsag:ServiceLevelObjective: specifies a service level objective in a guarantee

term, and contains an element either of type wsag:KPITarget or
wsag:CustomServiceLevel.

● /wsag:ServiceLevelObjective/wsag:KPITarget: defines service level objective as
an expression of a target of a key performance indicator associated with the
service.

● /wsag:KPITarget/wsag:KPIName: This name of a key performance indicator
associated with the service.

● /wsag:KPITarget/wsag:Target: This element defines the target value for a KPI.
● /wsag:ServiceLevelObjective/wsag:CustomServiceLevel: is of type xs:anyType

and can be customized by using a domain specific expression or assertion
language.

Penalty and Reward
The Penalty and Reward concepts come from WS-Agreement specification. In fact,
the business values of a guarantee term may include the relative importance of
meeting the Service Level Objective.

In that case penalties can be defined when the Service Level Objective is not meet.
Example:

 15 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Guarantee1:

SLO: qos:MTBF=150 time:minutes,
Qualifying Condition: numRequests < 1000,
Penalty: 5 USD, Importance 8

On the other hand, a bonus could be paid by the Customer when certain SLA levels are
reached within a period of time. An example of an SLA reward is the example of a
cake to be brought to the service meeting by the concerning party. The customer
brings a cake when levels are met. So the rewards are not concerned money or
punishment, but about (improving, rating) performance of the service.

2.3 Instantiation of the Application Metamodel into the NURO Case Study

In order to show how the metamodel works, we have considered the NURO case study
and we have defined the corresponding application model (see Figure 3).

Figure 3. Application Model of the NURO case study

As described in Figure 3, the model contains a first level Composed Module called
CloudGaming. This represents the whole case study. In turn, it is composed of one or
more Game Clients (these are not further detailed in this description as they are not
relevant for the deployment of the case study on the cloud) and of a Game Server. This
is composed of the following Base Modules: Game Application and Analytics
Application that are PHP components, exploiting PHP workers offered as services by
some PaaS, and Game DB and Log DB both exploiting the same MySQL service for their
execution.

While in this example the database service is already populated with the data
associated with Game DB and Log DB (the corresponding Artifacts are in the Deployed

 16 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

state), the PHP code associated to the Game and to the Analytics Applications is still to
be deployed.
Both Game Application and Analytics Application have the PHP language as Technology
Requirement.

The whole Game Server has associated a Quality of Service requirement, that is, Fast
Response, and two Management Policies called BOOM and Burst, respectively, that
will be activated as soon as the monitoring system realizes that the Fast Response
requirement is violated.

2.4 Topology Model

In SeaClouds, we employ the OASIS standard TOSCA (Topology and Orchestration
Specification for Cloud Applications) [19] to represent the topology of cloud
application, which indeed provides a powerful modelling language to describe the
structure of an application as a typed topology graph. A brief and compact
introduction about TOSCA can be found in Annexes (A. Background on TOSCA). In
addition, some of the following descriptions, examples and XML syntax are taken from
the TOSCA specification [19].

In TOSCA, a Service Template describes the structure of a cloud application by means
of a Topology Template, and it defines the manageability behavior of the cloud
application in the form of Plans. A Topology Template (also referred to as topology
model) defines the structure of a cloud application, and its model can be found in
Figure 18 in Annex A. Therefore, we will use the Topology Template in TOSCA to
represent the Topology in our application metamodel described in Figure 2.

A Topology Template in TOSCA consists of a set of Node Templates and Relationship
Templates that together define the topology model of a service as a directed graph. A
node in this graph is represented by a Node Template, which specifies the occurrence
of a Node Type as a component of a service. A Node Type defines the properties of
such a component (via Node Type Properties) and the operations (via Interfaces)
available to manipulate the component. Node Types are defined separately for reuse
purposes, and a Node Template references a Node Type and adds usage constraints,
such as how many times the component can occur.

A Relationship Template in this model specifies the occurrence of a relationship
between nodes in a Topology Template. Each Relationship Template refers to a
Relationship Type that defines the semantics and any properties of the relationship.
Relationship Types are defined separately for reuse purposes. The Relationship
Template indicates the elements it connects and the direction of the relationship by
defining one source and one target element (in nested SourceElement and
TargetElement elements).

The Module in our SeaClouds' application metamodel is mapped to the Node Template
in this Topology Template in TOSCA, while the relationships between Modules in a

 17 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Composed Module in the application metamodel are mapped to the Relationship
Templates in TOSCA.

All elements needed to define a TOSCA Service Template, including Node Type
definitions, Relationship Type definitions, as well as Service Templates themselves, are
provided in TOSCA Definitions documents. The following pseudo schema defines the
XML syntax of a Definitions document, which explains the overall structure of a TOSCA
Definitions document.

<Definitions id="xs:ID"
 name="xs:string"?
 targetNamespace="xs:anyURI">

 <Extensions>
 <Extension namespace="xs:anyURI"
 mustUnderstand="yes|no"?/> +
 </Extensions> ?

 <Import namespace="xs:anyURI"?
 location="xs:anyURI"?
 importType="xs:anyURI"/> *

 <Types>
 <xs:schema .../> *
 </Types> ?

 (
 <ServiceTemplate> ... </ServiceTemplate>
 |
 <NodeType> ... </NodeType>
 |
 <NodeTypeImplementation> ... </NodeTypeImplementation>
 |
 <RelationshipType> ... </RelationshipType>
 |
 <RelationshipTypeImplementation> ...

</RelationshipTypeImplementation>
 |
 <RequirementType> ... </RequirementType>
 |
 <CapabilityType> ... </CapabilityType>
 |
 <ArtifactType> ... </ArtifactType>
 |
 <ArtifactTemplate> ... </ArtifactTemplate>
 |
 <PolicyType> ... </PolicyType>
 |
 <PolicyTemplate> ... </PolicyTemplate>
) +

</Definitions>

In addition, this document (including also the following pseudo schemas) uses the
following syntax to define the serialization of resources:

 18 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

● Characters are appended to items to indicate cardinality:
○ "?" (0 or 1)
○ "*" (0 or more)
○ "+" (1 or more)

● Vertical bars, "|", denote choice. For example, "a|b" means a choice between
"a" and "b".

● Parentheses, "(" and ")", are used to indicate the scope of the operators "?",
"*", "+" and "|".

● Ellipses (i.e., "...") indicate points of extensibility. Note that the lack of an
ellipses does not mean no extensibility point exists, rather it is just not explicitly
called out - usually for the sake of brevity.

From the above pseudo schema, we can know that a TOSCA Definitions document
must define at least one of the elements: ServiceTemplate, NodeType,
NodeTypeImplementation, RelationshipType, RelationshipTypeImplementation,
RequirementType, CapabilityType, ArtifactType, ArtifactTemplate, PolicyType, or
PolicyTemplate, but it can define any number of those elements in an arbitrary order.

Then, with respect to Service Template itself, the following pseudo schema defines its
XML syntax, which specifies how a Service Template is defined.

<ServiceTemplate id="xs:ID"
 name="xs:string"?
 targetNamespace="xs:anyURI"
 substitutableNodeType="xs:QName"?>

 <Tags>
 <Tag name="xs:string" value="xs:string"/> +
 </Tags> ?

 <BoundaryDefinitions>
 <Properties>
 XML fragment
 <PropertyMappings>
 <PropertyMapping serviceTemplatePropertyRef="xs:string"
 targetObjectRef="xs:IDREF"
 targetPropertyRef="xs:string"/> +
 </PropertyMappings/> ?
 </Properties> ?

 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI"> +
 constraint ?
 </PropertyConstraint>
 </PropertyConstraints> ?

 <Requirements>
 <Requirement name="xs:string"? ref="xs:IDREF"/> +
 </Requirements> ?

 <Capabilities>
 <Capability name="xs:string"? ref="xs:IDREF"/> +
 </Capabilities> ?

 19 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 <Policies>
 <Policy name="xs:string"? policyType="xs:QName"
 policyRef="xs:QName"?>
 policy specific content ?
 </Policy> +
 </Policies> ?

 <Interfaces>
 <Interface name="xs:NCName">
 <Operation name="xs:NCName">
 (
 <NodeOperation nodeRef="xs:IDREF"
 interfaceName="xs:anyURI"
 operationName="xs:NCName"/>
 |
 <RelationshipOperation relationshipRef="xs:IDREF"
 interfaceName="xs:anyURI"
 operationName="xs:NCName"/>
 |
 <Plan planRef="xs:IDREF"/>
)
 </Operation> +
 </Interface> +
 </Interfaces> ?

 </BoundaryDefinitions> ?

 <TopologyTemplate>
 (
 <NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
 minInstances="xs:integer"?
 maxInstances="xs:integer | xs:string"?>
 <Properties>
 XML fragment
 </Properties> ?

 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI">
 constraint ?
 </PropertyConstraint> +
 </PropertyConstraints> ?

 <Requirements>
 <Requirement id="xs:ID" name="xs:string" type="xs:QName"> +
 <Properties>
 XML fragment
 <Properties> ?
 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI"> +
 constraint ?
 </PropertyConstraint>
 </PropertyConstraints> ?
 </Requirement>
 </Requirements> ?

 20 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 <Capabilities>
 <Capability id="xs:ID" name="xs:string" type="xs:QName"> +
 <Properties>
 XML fragment
 <Properties> ?
 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI">
 constraint ?
 </PropertyConstraint> +
 </PropertyConstraints> ?
 </Capability>
 </Capabilities> ?

 <Policies>
 <Policy name="xs:string"? policyType="xs:QName"
 policyRef="xs:QName"?>
 policy specific content ?
 </Policy> +
 </Policies> ?

 <DeploymentArtifacts>
 <DeploymentArtifact name="xs:string"

artifactType="xs:QName"
 artifactRef="xs:QName"?>
 artifact specific content ?
 </DeploymentArtifact> +
 </DeploymentArtifacts> ?
 </NodeTemplate>
 |
 <RelationshipTemplate id="xs:ID" name="xs:string"?
 type="xs:QName">
 <Properties>
 XML fragment
 </Properties> ?

 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI">
 constraint ?
 </PropertyConstraint> +
 </PropertyConstraints> ?

 <SourceElement ref="xs:IDREF"/>
 <TargetElement ref="xs:IDREF"/>

 <RelationshipConstraints>
 <RelationshipConstraint constraintType="xs:anyURI">
 constraint ?
 </RelationshipConstraint> +
 </RelationshipConstraints> ?

 </RelationshipTemplate>
) +
 </TopologyTemplate>

 <Plans>
 <Plan id="xs:ID"

 21 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 name="xs:string"?
 planType="xs:anyURI"
 planLanguage="xs:anyURI">

 <Precondition expressionLanguage="xs:anyURI">
 condition
 </Precondition> ?

 <InputParameters>
 <InputParameter name="xs:string" type="xs:string"
 required="yes|no"?/> +
 </InputParameters> ?

 <OutputParameters>
 <OutputParameter name="xs:string" type="xs:string"
 required="yes|no"?/> +
 </OutputParameters> ?
 (
 <PlanModel>
 actual plan
 </PlanModel>
 |
 <PlanModelReference reference="xs:anyURI"/>
)

 </Plan> +
 </Plans> ?

</ServiceTemplate>

In Service Template definition, the element of TopologyTemplate specifies the overall
structure of the cloud application, i.e., the components it consists of, and the relations
between those components. The components of a service are referred to as Node
Templates, the relations between the components are referred to as Relationship
Templates.

For our SeaClouds platform, which are the application modules to be deployed and
their relationships are our first concern from user inputs. Obviously, they are
corresponding to the above-mentioned Node Templates and Relationship Templates in
Topology Template. Therefore, we introduce more about these two elements here.

● NodeTemplate: This element specifies a kind of a component making up the
cloud application. The QName value of the attribute type refers to the Node
Type providing the type of the Node Template. The Properties element
specifies initial values for one or more of the Node Type Properties, and the
initial values are specified by providing an instance document of the XML
schema of the corresponding Node Type Properties. The Requirements element
contains a list of requirements for the Node Templates, according to the list of
requirement definitions of the Node Type, while the Capabilities element
contains a list of capabilities for the Node Template, according to the list of
capability definitions of the Node Type.

 22 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

● RelationshipTemplate: This element specifies a kind of relationship between
the components of the cloud application. For each specified Relationship
Template the source element and target element must be specified in the
Topology Template. The QName value of the type property refers to the
corresponding Relationship Type. The Properties element specifies initial
values for one or more of the Relationship Type Properties of the Relationship
Type providing the property definitions in the concrete context of the
Relationship Template. The SourceElement specifies the origin of the
relationship represented by the current Relationship Template, and the ref
attribute of this element references a Node Template or a Requirement of a
Node Template within the same Service Template document that is the source
of the Relationship Template. The TargetElement specifies the target of the
relationship, and the ref attribute references a Node Template or a Capability
of a Node Template within the same Service Template document that is the
target of the Relationship Template.

In addition, the BoundaryDefinitions element specifies the properties the Service
Template exposes beyond its boundaries, i.e. properties that can be observed outside
from the Service Template. More precisely, the (optional) BoundaryDefinitions
element allows to specify the properties, requirements and operations of internal
components which are externally visible, and also describe non-functional behaviors
that the whole application declare to expose through Policies. The latter also concerns
user inputs (as we will see in the next section).

2.5 Representation of Properties and Requirements into TOSCA

In addition to the user inputs described in the previous section, namely, the
application modules to be deployed and their relationships, the desired QoS properties
and technology requirements for individual application modules, and the QoS
properties for the whole application are also our concerns. How to express them in
TOSCA is an important step for our SeaClouds platform. Thus, in this section we will
describe in detail how to map these inputs from application model into TOSCA.

2.5.1 Technology Requirements

With respect to the technology requirements of each module inputted by the user,
they can be mapped into Properties of corresponding Node Template in TOSCA
Definitions. In this mapping process, we first need to define the structure of such
properties in related Node Type via Properties Definition, i.e. the names, data types
and allowed values the properties defined in Node Templates using a Node Type or
instances of such Node Templates can have.

Based on the predefined XML schema for module properties, we can complete this
specification via Property Definition in Node Type. The following shows a snippet of the
XML syntax of such definition.

 23 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

<PropertiesDefinition element="xs:QName"? type="xs:QName"?/>

Here, the PropertiesDefinition element has one but not both of the following
properties:

● element: This attribute provides the QName of an XML element defining the
structure of the Node Type Properties.

● type: This attribute provides the QName of an XML (complex) type defining the
structure of the Node Type Properties.

Through this way, the structure of observable properties of Node Type can be specified
by means of the predefined XML schema. The following shows a snippet of an example
Node Type "Server", which uses a predefined XML element ComputeProperties to
specify the structure of its properties.

<NodeType name="Server">
 <documentation>A basic cloud compute resource</documentation>
 <DerivedFrom typeRef="ns1:RootNodeType"/>
 <PropertiesDefinition element="ns1:ComputeProperties"/>
</NodeType>

After defining the structure of properties in Node Type through Properties Definition,
the Node Template of this Node Type will specify initial values for one or more of the
Node Type Properties, via Properties in the Node Template. The following shows the
snippet of such XML syntax.

<NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
 minInstances="xs:integer"?
 maxInstances="xs:integer | xs:string"?>
 <Properties>
 XML fragment
 </Properties> ?
</NodeTemplate>

The initial values are specified by providing an instance document of the XML schema
of the corresponding Node Type Properties. This instance document considers the
inheritance structure deduced by the DerivedFrom property of the Node Type
referenced by the type attribute of the Node Template.

The instance document of the XML schema might not validate against the existence
constraints of the corresponding schema: not all Node Type properties might have an
initial value assigned, i.e. mandatory elements or attributes might be missing in the
instance provided by the Properties element. Once the defined Node Template has
been instantiated, any XML representation of the Node Type properties MUST validate
according to the associated XML schema definition.

The following shows a snippet of an example Node Template "VmMySQL", which is
based on the "Server" Node Type described above. We can see that this template

 24 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

includes specific property settings that the application developer has provided that
describes settings to be applied to that server.

<NodeTemplate id="VmMySQL" name="VM for MySQL" type="ns1:Server">
 <Properties>
 <ns1:ComputeProperties>
 <num_cpus>2</num_cpus>
 <mem_size>4096</mem_size>
 <disk_size>10</disk_size>
 <os_arch>x86_64</os_arch>
 <os_type>RHEL</os_type>
 <os_version>6.5</os_version>
 </ns1:IaaSCapabilityProperties>
 </Properties>
</NodeTemplate>

TOSCA assumes the existence of a base set of Node Types (e.g., a 'Compute' node), and
other types for creating TOSCA Service Templates. It is envisioned that many additional
Node Types for building service templates will be created by communities. With
respect to these basic Node Types (including Compute, SoftwareComponent, DBMS,
Database, ObjectStorage, and BlockStorage), we define the corresponding preliminary
XML schemas that are used in their Property Definition.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.example.org/SeaClouds/TOSCA"
 xmlns="http://www.example.org/SeaClouds/TOSCA">
 <xs:complexType name="tComputeProperties">
 <xs:sequence>
 <xs:element name="num_cpus" type="xs:positiveInteger"/>
 <xs:element name="mem_size" type="xs:positiveInteger"/>
 <xs:element name="disk_size" type="xs:positiveInteger"/>
 <xs:element name="os_arch" type="xs:string"/>
 <xs:element name="os_type" type="xs:string"/>
 <xs:element name="os_distribution" type="xs:string"/>
 <xs:element name="os_version" type="xs:string"/>
 <xs:element name="ip_address" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element type="tComputeProperties" name="ComputeProperties"/>

 <xs:complexType name="tSoftwareComponentProperties">
 <xs:sequence>
 <xs:element name="version" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element type="tSoftwareComponentProperties"

name="SoftwareComponentProperties"/>

 <xs:complexType name="tDBMSProperties">
 <xs:sequence>
 <xs:element name="dbms_root_password" type="xs:string"/>
 <xs:element name="dbms_port" type="xs:integer"/>
 </xs:sequence>

 25 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 </xs:complexType>
 <xs:element type="tDBMSProperties" name="DBMSProperties"/>

 <xs:complexType name="tDatabaseProperties">
 <xs:sequence>
 <xs:element name="db_user" type="xs:string"/>
 <xs:element name="db_password" type="xs:string"/>
 <xs:element name="db_port" type="xs:integer"/>
 <xs:element name="db_name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element type="tDatabaseProperties" name="DatabaseProperties"/>

 <xs:complexType name="tObjectStorgeProperties">
 <xs:sequence>
 <xs:element name="store_name" type="xs:string"/>
 <xs:element name="store_size" type="xs:integer"/>
 <xs:element name="store_maxsize" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element type="tObjectStorgeProperties"

name="ObjectStorgeProperties"/>

 <xs:complexType name="tBlockStorgeProperties">
 <xs:sequence>
 <xs:element name="store_mount_path" type="xs:string"/>
 <xs:element name="store_fs_type" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element type="tBlockStorgeProperties"

name="BlockStorgeProperties"/>

</xs:schema>

2.5.2 Quality Requirements

TOSCA employs Policies to describe non-functional behavior and/or QoS that an
application and its components can declare to expose. A policy has an abstract Policy
Type definition and is instantiated by defining a Policy Template. The Policy Type
describes the structure and required parameters of a policy, while the Policy Template
is used to define a specific policy instance. Then, Service Templates and Node
Templates can declare their non-functional features by referring the Policy Templates
describing them.

A Policy Type is a reusable entity that describes a kind of non-functional behavior or a
kind of QoS that a Node Type can declare to expose. It defines the structure of
observable properties via PropertiesDefinition, i.e. the names, data types and allowed
values the properties defined in a corresponding Policy Template can have. It can
inherit properties from another Policy Type by means of the DerivedFrom element. A
Policy Type declares the set of Node Types it specifies non-functional behavior for via
the AppliesTo element. Note that being “applicable to” does not enforce
implementation. Whether or not an instance of a Node Type to which a Policy Type is

 26 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

applicable will show the specified non-functional behavior, is determined by a Node
Template of the corresponding Node Type.

The following pseudo schema defines the XML syntax of Policy Types.

<PolicyType name="xs:NCName"
 policyLanguage="xs:anyURI"?
 abstract="yes|no"?
 final="yes|no"?
 targetNamespace="xs:anyURI"?>
 <Tags>
 <Tag name="xs:string" value="xs:string"/> +
 </Tags> ?

 <DerivedFrom typeRef="xs:QName"/> ?

 <PropertiesDefinition element="xs:QName"? type="xs:QName"?/> ?

 <AppliesTo>
 <NodeTypeReference typeRef="xs:QName"/> +
 </AppliesTo> ?

 policy type specific content ?

</PolicyType>

The attribute policyLanguage specifies the language used to be specify the details of
the Policy Type. These details can be defined as policy type specific content of the
PolicyType element. For this attribute, we can select whatever language we want, such
as the WS-Agreement used in our Application Metamodel in Section 4.2, or even we
can use YAML or XML.

The PropertiesDefinition element specifies the structure of the observable properties
of the Policy Type by means of XML schema. It has one but not both of the following
properties:

● element: This attribute provides the QName of an XML element defining the
structure of the Policy Type Properties.

● type: This attribute provides the QName of an XML (complex) type defining the
structure of the Policy Type Properties.

The following shows a snippet of an example Policy Type “HighAvailability”, in which
the "HAProperties" element defines the properties of the Policy Type, and it is defined
as an XML element.

 <PolicyType name="HighAvailability">
 <PropertiesDefinition element="spp:HAProperties"/>
 </PolicyType>

Correspondingly, a Policy Template represents a particular non-functional behavior or
QoS that can be referenced by a Node Template. It refers to a specific Policy Type that

 27 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

defines the structure of observable properties (metadata) of the non-functional
behavior, and then typically defines values for those properties inside the Properties
element.

The following pseudo schema defines the XML syntax of Policy Template.

<PolicyTemplate id="xs:ID" name="xs:string"? type="xs:QName">

 <Properties>
 XML fragment
 </Properties> ?

 <PropertyConstraints>
 <PropertyConstraint property="xs:string"
 constraintType="xs:anyURI"> +
 constraint ?
 </PropertyConstraint>
 </PropertyConstraints> ?

 policy type specific content ?

</PolicyTemplate>

The Properties element specifies the invariant properties of the Policy Template, i.e.
those properties that will be commonly used across different contexts in which the
Policy Template is used. The initial values are specified by providing an instance
document of the XML schema of the corresponding Policy Type Properties. This
instance document considers the inheritance structure deduced by the DerivedFrom
property of the Policy Type referenced by the type attribute of the Policy Template.

The following shows a snippet of an example Policy Template "MyHAPolicy", which is
of type "HighAvailability" described above. This Policy Template provides values for the
properties defined by the Properties Definition of the “HighAvailability” Policy Type.
The AvailabilityClass property is set to “4”. The value of the HeartbeatFrequency is
“250”, measured in “msec”.

<PolicyTemplate id="MyHAPolicy"
 name="My High Availability Policy"
 type="bpt:HighAvailability">
 <Properties>
 <HAProperties>
 <AvailabilityClass>4</AvailabilityClass>
 <HeartbeatFrequency measuredIn="msec">
 250
 </HeartbeatFrequency>
 </HAProperties>
 </Properties>
</PolicyTemplate>

 28 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

With the Policy Types and Policy Templates are defined, then we can specify the
policies for Node Templates (or for Service Template via BoundaryDefinitions) in their
definitions. The following pseudo schema shows the snippet of such XML syntax.

<NodeTemplate id="xs:ID" name="xs:string"? type="xs:QName"
 minInstances="xs:integer"?
 maxInstances="xs:integer | xs:string"?>
 <Policies>
 <Policy name="xs:string"? policyType="xs:QName"
 policyRef="xs:QName"?>
 policy specific content ?
 </Policy> +
 </Policies> ?

</NodeTemplate>

The Policies element specifies policies associated with the Node Template. In this
element, the policyType attribute specifies the type of this Policy. The QName value of
this attribute should correspond to the QName of a PolicyType defined in the same
Definitions document or in an imported document.

The QName value of the policyRef attribute references a Policy Template that is
associated to the Node Template. This Policy Template can be defined in the same
TOSCA Definitions document, or it can be defined in a separate document that is
imported into the current Definitions document. The type of Policy Template
referenced by the policyRef attribute must be the same type or a sub-type of the type
specified in the policyType attribute.

Note that this policyRef attribute is optional, which means that we do not need to
reference a Policy Template. If no Policy Template is referenced, the policy specific
content of the Policy element alone is assumed to represent sufficient policy specific
information in the context of the Node Template. In this part, we can use any language
that we like to describe the QoS and/or non-functional properties (we just need to
specify this language in the policyLanguage attribute of the corresponding Policy
Type). Therefore, through these ways, we can easily represent the Quality
Requirements defined in our Application Metamodel in TOSCA.

Moreover, since Policy Templates can provide invariant information about a non-
functional behavior (i.e. information that is context independent, such as the
availability class of an availability policy), we can use the Policy element defined in a
Node Template to provide variant information (i.e. information that is context specific,
such as a specific heartbeat frequency for checking availability of a component) in the
policy specific body of the Policy element.

In addition, since the Module in the Application metamodel can have associated a
Management Policy, which defines the actions to be executed when some condition
happens. This management policy can be described either in Brooklyn [15] language

 29 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

or in some abstraction that maps into it. Therefore, we can also use Policies in the
manners described above to represent such management policy in TOSCA.

2.6 Nuro (early) Case: Topology Specification in TOSCA

In order to illustrate the topology specification using TOSCA, we use the early version
of the Nuro Case, which consists of two modules: PHP and Database.

Figure 4. Nuro case requirement

The Nuro systems are based on PHP and MySQL, thus the needed modules for this
case are PHP module and Database (MySQL) module. We use the Winery tool [21],
developed in the context of the open source OpenTOSCA environment, to generate
the topology model of this case. The tool allows the representation of the application's
modules through forms and the composition of the topology in a graphical way by
means of the drag-and-drop technique. Figure 5 presents the topology for the Nuro
Case using Winery.

Figure 5. TOSCA-compliant topology specification for Nuro Case in Winery

 30 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

3. Discovery of Capabilities and Services Featured by Cloud Providers

Together with the description of the user input, the planner component needs to know
the possible services available from cloud providers. Multiple cloud resources can be
offered by cloud providers at different levels of abstraction. Therefore, the aim of this
section is to provide a cloud meta-model to represent and generalize cloud services
(infrastructures and platforms), by following an approach similar to the one presented
in Section 2 to model a cloud application.

To this end, a study of the common services featured by some of the topmost cloud
providers has been performed and it has been summarized in Annex B. This study has
highlighted that different providers offer services with certain configurations, cost
profiles and policies. Nevertheless, one of the objective of the SeaClouds platform is to
offer an automatic way to compare these services, in order to select the one that best
fit user’s requirements. Therefore, a general model to describe cloud services is
needed.

3.1 Definition of a General Cloud Profile Model

The cloud profile model is a generalization used to represent in a common way the
services offered by different cloud providers. The model proposed in this sub-section
has been defined by taking into account those services that are common for several
cloud providers.

In order to ease the matchmaking process, the services described in the cloud profile
model should be similar to the services required by the user to run her application
modules. Moreover, since PaaS and IaaS providers offer services at different levels
(infrastructure and platform), the proposed model should reflect this distinction.

 31 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Figure 6. Cloud service models

Generally speaking, IaaS providers deliver an infrastructure mainly formed by
computing, storage and networking resources, while PaaS providers deliver
computational resources through a platform. In the latter case the user does not care
about the management of the underlying layers of hardware and software, but this
advantage is counterweighted by a loss in flexibility.

In the following we present the description of the cloud profile model, proposed to
provide a general representation of cloud providers and the services they offer. This
model is enough general to allow cloud services to be represented independently from
a specific cloud provider. This model has been derived by the generalization of the
cloud providers services analyzed in Annex B and it represents a simplification of the
Cloud Provider Independent Model (CPIM) described in the MODACloud project [16].

A generic CloudProvider is usually an entity that offers several CloudServices, which
can be classified as Iaas-, PaaS- and SaaS-Services. The proposed model is going to
focus on the first two types of services: IaaS-Service and PaaS-Service. An IaaS-Service
is a CloudService composed of one or more CloudResources, while a PaaS-Service is
composed of one or more CloudPlatforms. A cloud application provided by a user can
be deployed on CloudPlatforms or run directly on CloudResources (in this case the
cloud application provided will include any middleware needed by application itself to
run). CloudPlatforms and CloudResources can be generalized by the concept of
CloudElement, which can be characterized by a CostProfile (used to express the
pricing model of that service). A CloudService can also have ScalingPolicies, which are
composed by ScalingRules. Each scaling rule describe the metric of interest, the
threshold value and the activation rule. Usually, scaling policies are defined on one or

 32 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

more ResourcePools, on which CloudPlatforms or user applications can run. The
entities described so far are represented in the model in Figure 7.

Figure 7. General cloud profile model

In the following we will further detail this model, and in particular we will refer to
services offered by IaaS and PaaS providers.

3.1.1 A Model for IaaS Services

In the previous paragraph, we have defined a CloudResource as a particular kind of
IaaS-Service. A CloudResource is the minimal resource unit provided by an IaaS-Service
and can be classified into Compute and Storage. A Compute unit represents a general
computational resource, like a Virtual Machine. A Storage unit is a resource that can
store structured or unstructured data. As identified in the previous sections, there are
three types of storage: BlockStorage, FileStorage and ObjectStorage. BlockStorage is
organized into unstructured blocks, FileStorage provides access to a file system, while
ObjectStorage provides access to whole objects. For some CloudResources it is
possible to define a Location, which specifies where the infrastructure provided by the
cloud resource is located.

As said before a CloudResource is a specific CloudElement and a CloudElement can be
connected to one or more CloudElements through point-to-point Connections in order
to create a virtual network of CloudElements (topology). A ResourcePool is a set of
Compute CloudResources and it is associated to an AllocationProfile, which is a set of
Allocations specifying how the number of allocated instances within the Resource Pool

 33 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

changes in a certain reference period. In this way, the model is able to consider scaling
policies.

Figure 8. Cloud profile model focused on IaaS services

3.1.2 Model for PaaS Services

A CloudPlatform is a software framework exposing a defined API provided to a user to
develop custom applications and services and it also provides an execution
environment for them. A CloudPlatform runs on at least one CloudResource. There are
several types of cloud platform services. WebServer, Firewall, RuntimeContainer,
LoadBalancer, MessageQueue, Database are the services most commonly offered by
PaaS providers. A Database platform can store structured or semi-structured data and
can be specialized into RelationalDB and NoSQLDB. A RelationalDB is based on the
relational model, while NoSQLDB is based on a distributed architecture, with data
having no relational structure. A CloudPlatform is a CloudElement itself, therefore it
can be linked to other CloudElements.

 34 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Figure 9. Cloud profile model focused on PaaS services

The overall model, including PaaS and IaaS services, is depicted in Figure 10.

 35 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Figure 10. Overall cloud profile model

3.2 Definition of the Cloud Profile Model in TOSCA

Amazon and Rackspace are converging towards the use of a template to describe
services orchestration. Amazon proposes AWS Cloud Formation Template [17] as a
way to create a collection of AWS resources and provision them to form a stack that
will be used to run the user application. In a similar way, Rackspace uses the
OpenStack Heat Orchestration Template to describe the infrastructure for a cloud
application in a human readable text file.

Generally speaking, each template offers means to map the services required by a user
application to the resources offered by a cloud provider. To this end, each provider
defines a set of resources types that can be used in the corresponding template. For
example Amazon defines a resource of “AWS::EC2::Instance” for an amazon EC2
computing instance. Similarly, OpenStack defines its resource types, and more
specialized resources are added to support RackSpace cloud.

As highlighted in the previous section, some of the resources belonging to different
providers can be abstracted by representing them with a common high-level definition

 36 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

and then specialized for each provider. One of the objectives of the TOSCA standard is
precisely to provide a meta-model to describe cloud services in a uniform way, in order
to promote application portability among different cloud providers.

In this sub-section, we describe how the concepts of TOSCA (see Annex A) can be used
to describe the concepts introduced in the Cloud Profile Model, by focusing in
particular on the structure of a service and therefore on the Topology Template. In
practice, a cloud service can be represented in TOSCA by a Service Template including
no Plans. All elements needed to define a TOSCA Service Template - such as Node Type
definitions, Relationship Type definitions, etc. - as well as Service Templates
themselves are provided in one or more TOSCA Definitions documents, which can
contain only element definitions of building blocks, or complete models of cloud
services (definitions plus instantiations).

The most general block in the proposed cloud profile model is the CloudElement that
can be seen as a general representation of any service in the cloud. This concept can
be easily mapped to the concept of NodeType in TOSCA. A Node Type is a reusable
entity that defines the type of one or more Node Templates. For example any
CloudResource or CloudPlatform can be described by a NodeType. In the following
example, we show the “VirtualMachine” NodeType by referencing an externally
defined set of standardized properties, and by declaring that it provides the capability
to “host” an operating system (or node).

 <NodeType name="VirtualMachine">
 <documentation> A basic cloud compute resource</documentation>
 <DerivedFrom typeRef="tns:RootNodeType"/>
 <PropertiesDefinition element="tns:VirtualMachineProperties"/>
 <CapabilityDefinitions>
 <CapabilityDefinitioncapabilityType="tns:OSContainerCapability"
 lowerBound="0" name="os" upperBound="1"/>
 ...
 </CapabilityDefinitions>
 ...
 </NodeType>

Where the externally provided “VirtualMachineProperties” complex type would be
defined as follows:

<xs:complexType name="VirtualMachineProperties">
 <xs:sequence>
 <xs:element default="1" name="NumCpus">
 <xs:annotation>
 <xs:documentation>Number of CPUs</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:int">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="4"/>
 </xs:restriction>
 </xs:simpleType>

 37 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 </xs:element>
 <xs:element name="Memory" type="xs:int">
 <xs:annotation>
 <xs:documentation>Memory size (in MB)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Disk" type="xs:int">
 <xs:annotation>
 <xs:documentation>Disk size (in GB)</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

This complex type defines the properties that can be used for the “VirtualMachine”
NodeType. For example the number of CPUs can be defined and its value can assume
1, 2 or 4. Moreover, it is possible to specify the memory size in MB and the disk size in
GB.

The same approach can be applied to any kind service. The following example
describes “WebServer” and “ApacheWebServer” NodeTypes:

 <NodeType name="WebServer">
 <documentation>Web Server</documentation>
 <DerivedFrom typeRef="tns:RootNodeType"/>
 <RequirementDefinitions>
 <RequirementDefinition lowerBound="1" name="container"
 requirementType="tns:SoftwareContainerRequirement"

upperBound="1"/>
 </RequirementDefinitions>
 <CapabilityDefinitions>
 <CapabilityDefinition
 capabilityType="tns:WebApplicationContainerCapability"
 lowerBound="0" name="webapps" upperBound="unbounded"/>
 </CapabilityDefinitions>
 </NodeType>

 <NodeType name="ApacheWebServer">
 <documentation>Apache Web Server</documentation>
 <DerivedFrom typeRef="ns1:WebServer"/>
 <PropertiesDefinition element="tns:ApacheWebServerProperties"/>
 <CapabilityDefinitions>
 <CapabilityDefinition
 capabilityType="tns:ApacheWebApplicationContainerCapability"
 lowerBound="0" name="webapps" upperBound="unbounded"/>
 <CapabilityDefinition
 capabilityType="tns:ApacheModuleContainerCapability"
 lowerBound="0" name="modules" upperBound="unbounded"/>
 </CapabilityDefinitions>
 <Interfaces>
 <Interface name="http://www.example.com/interfaces/lifecycle">

 38 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 <Operation name="install"/>
 <Operation name="configure"/>
 <Operation name="start"/>
 <Operation name="stop"/>
 <Operation name="uninstall"/>
 </Interface>
 </Interfaces>
 </NodeType>

3.2.1 Abstract and Concrete Cloud Services

In Section 2.2 the difference between Abstract and Concrete Services has been
introduced. From the previous examples it is possible to understand in practice this
difference. An Abstract Service is a general description of a service needed by a
module to run, for example a web application can require to be hosted on a
“WebServer”, without specifying exactly which kind of web server is needed, thus
leaving to the matchmaking process the possibility to retrieve all the possible
“WebServer” services available. On the other hand, a Concrete Service can be
considered as a specialization of the correspondent Abstract Service. In the previous
example this is exactly represented by the “ApacheWebServer” Node Type. To this
end, TOSCA provides the concept of inheritance among Node Types: a Node Type can
inherit properties from another Node Type by means of the DerivedFrom element.
Moreover, the Node Types might be declared as abstract, meaning that they cannot be
instantiated. The purpose of such abstract Node Types is to provide common
properties and behavior for re-use in specialized, derived Node Types. Node Types
might also be declared as final, meaning that they cannot be derived by other Node
Types.

3.2.2 Services Instantiation

As explained so far, Node Types are reusable entities. They can be actually instantiated
by means of Node Templates. In this way, the same Node Type can be instantiated by
different Node Templates corresponding to different services featured by different
cloud providers. The following example shows how to instantiate a Node Template of
type “ApacheWebServer”.

 <NodeTemplate id="ApacheWebServer" name="Apache Web Server"
 type="ns2:ApacheWebServer">
 <Properties>
 <ns2:ApacheWebServerProperties>
 <httpdport>80</httpdport>
 </ns2:ApacheWebServerProperties>
 </Properties>
 </NodeTemplate>

3.2.3 Turning Service Templates into Composable

 39 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Often, not only individual types can be reused but complete topologies are meaningful
in many situations. For example, in most cases an entire stack offered by a PaaS
provider can be reused. TOSCA supports to model a corresponding service template
and turn this service template into a substitutable for a node type. This is achieved by
means of the BoundaryDefinitions element: this element contains nested elements
that can refer to the constituencies (like node templates etc.) of the service template
and “export” corresponding definitions “to the boundary” of the service template. This
way, the service template “looks like a node type” and can be used as such in another
service template. This approach can be used for example to export the ensemble of
services normally offered as a single service by a PaaS provider. For instance, a service
template composed of a Container Node Type (that is the basic compute unit offered
by a PaaS provider) plus WebServer and a LoadBalancer NodeTypes can be turned into
a composable.

3.2.4 Cost Profile, Location and Scaling Policies

Sometimes services can be associated to concepts that describes their non-functional
behaviors and/or quality of service. To express these concepts TOSCA provides Policy
Types, which are reusable entities that describes non-functional behaviors or QoS
properties that a Node Type can declare to expose. For example, a Policy Type can be
defined to express high availability for specific Node Types (e.g. a Node Type for an
application server). As well as Node Types, Policy Types can be instantiated by means
of Policy Template.

In addition, TOSCA provides a way to describe logical groupings (parts) of an
application that should be deployed, configured and managed together as “tiers”. This
same grouping concept can be associated to scaling policies that apply to each tier so
that they can be independently scaled by cloud service providers to accommodate
variations in consumer demand. To this end, a Node Type “Tier” and the
corresponding Node Template can be used. For example, a Tier node can group both
an “ApacheWebServer” Node Template and a “VirtualMachine” Node Template and
define a scaling policy for the whole group. In this way both components (i.e. the
compute nodes and the software on-top of each compute node) will be scaled as a
unit.

<NodeType name="Tier">
 <documentation>Tier</documentation>
 <DerivedFrom typeRef="tns:RootNodeType"/>
 ...
</NodeType>

<NodeTemplate id="WebTier" name="Web Tier"
 type="ns1:Tier">
</NodeTemplate>

 40 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

4. Planner Service

The Planner component is in charge of providing an Abstract Deployment Plan (ADP)
that defines where each application module will be deployed. Given a set of modules
with their requirements, the topology of the application and a set of cloud resources,
the Planner will generate an ADP that meet the requirements specified by the user.
The Abstract Deployment Plan includes the concrete services associated with each
Base module and the policies to manage the scaling mechanism of each module. The
ADP is described in detail in section 4.2.3.

The generation of the Abstract Deployment Plan can be performed in two steps:
1) Matchmaking: this first step aims to identify the cloud resources that are suitable to
allocate each module. To this end, the user can be allowed to specify its requirements
as hard or soft requirements. Hard requirements must be satisfied and will be used
during the matchmaking to discard all the cloud services that do not match them,
whereas both hard and soft requirements can be used in the subsequent step.
2) Optimization: once a set of suitable cloud services have been identified for each
modules, an optimization process can be performed. The space of solutions is
composed of the set of Abstract Deployment Plans that can be obtained by allocating
each module on the different cloud resources (mapping).

4.1 Matchmaking

The matchmaking activity of the Planner module is in charge of identifying, for each
module, a set of cloud resources that satisfy the technology requirements specified by
the user. This first step aims to reduce the search space, by selecting only those
services that can be used to construct candidate solutions for the optimization step. In
fact, the matchmaking step does not take into account QoS requirements and possible
relationships among modules.

4.1.1 Inputs and Output

The first input of the matchmaking component is a set of service descriptions provided
by the user. For each module the user defines a service description, which describes
the capabilities needed to host that module.

The second input of the matchmaking component is a set of concrete service
descriptions offered by cloud providers. The ensemble of these services is stored in a
repository generated and updated by the discoverer component. Since both IaaS and
PaaS providers can offer their services, this repository contains services at IaaS and
PaaS level. Therefore, the user can specify either a service description at PaaS level or
at IaaS level. In the second case, the user will be responsible to provide and install the
platform services needed by her application to be run.

 41 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Given these inputs, the matchmaking component matches, for each module, the
service description provided by the user with the service descriptions available in the
repository and provides, for each module, a list of feasible services. This information is
then passed to the optimization component.

4.1.2 Matchmaking Process

The matchmaking process is performed on each application module separately. As can
be seen from the Application meta-model described in section 2.2, a module is
associated to a set of requirements that are mapped by an Abstract Service. Thus, for
each Module, the user is required to provide a description of the environment needed
by the module itself to run. The module requirements will be mapped into this
environment. In the following we give an example of this process.

Let consider a web application composed of three modules that needs three services
to run: a WebServer, a Database and a Scheduler. The following requirements have
been specified for the WebServer: it should support PHP 5.2 or 5.5 and HTTP over SSL
connections. Thus, for the PHP module, the user will provide the description of the
WebServer service and its characteristics. In this case the user is specifying an Abstract
Service, since she has no preference about the kind of WebServer to be used for her
application. The matchmaker component will be in charge of finding all the possible
Concrete Services offered by cloud providers that realize a certain Abstract Service. On
the other hand, the user can decide to directly specify a Concrete Service, for example
an ApacheWebServer. The process to be followed is exactly the same and in this case
the work for the matchmaker component is easier since it will look for exact matching
between Concrete Services.

 42 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Figure 11. Initial approach for the matchmaking process

A high-level algorithm for the optimization problem is shown in the following:

while (notEmpty(listOfModules)) loop
 foreach (module in listOfModules) loop
 desiredService = getService (module);
 foreach (service in offeredServices) loop
 if (match (service, offeredService) then
 add(service, candidateService(module));
 endif;
 endfor;
 endloop;
endloop;

4.2 Optimization

The optimization activity of the Planner component decides, among all the options
that satisfy the technology requirements provided by the matchmaking activity, a
suitable combination of cloud resources that allows the application to satisfy its quality
requirements, at the same time that considers the utilization of cloud elasticity.

This a challenging task from the research point of view since approaches in the state of
the art on this topic do not completely offer all the functionalities that the Planning
module of SeaClouds would provide. In Annex C, we have summarized approaches

 43 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

appeared in the scientific literature that deal with resource allocation challenges,
which are strongly related to the ones faced by the SeaClouds optimization activity.

The rest of this section explains in detail the outputs provided by the optimization
activity, the input information that is required in order to create the outputs, and the
process to create the outputs from the input information.

4.2.1 Required and Provided Information

Once the optimizer activity has executed, the Planner will be able to provide
information regarding:

● Allocation of each base module onto one or more locations of independent
availability.

● Allocation of modules into concrete resource types; i.e., decide for the
execution of each module using PaaS or IaaS, among the feasible alternatives
provided by the matchmaking activity.

● For each module that has been decided to make use of PaaS, the characteristics
of the platform are provided.

● For modules that make use of IaaS, the type of virtual machines in which they
will execute and number of them are provided.

● Scaling mechanisms for each module that executes on IaaS. This output
contains information for the application to take advantage of the elasticity
offered by cloud providers.

For creating this information, principles of the fields of performance and availability
evaluation are exploited. According to the information usually required by research
works in these areas, the optimizer will require the following information as input:

● Application topology. This information is described in object Topology in the
application model. It is useful for performance and availability evaluation.

● Candidate services for each base module, provided by the previous
matchmaking. This is used for availability, performance and cost evaluation.

● Quality Requirements. This information is described in object Quality of Service
in the application model.

● Expected application workload. This information is used for performance
evaluation.

● Operational profile of the application, including:
○ Routing between modules
○ Service demand of each module
○ Amount of data transfer between modules in terms of size of messages

This information is used for performance and evaluation.

● Maximum parallelism level of modules. This information is used for
performance evaluation. It is an important information for modules that
execute in IaaS, in order to make an appropriate decision regarding the power
and number of cores of the VMs in which they will execute.

 44 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Network connection speed between different locations and inside each location.

4.2.2 Optimization Process

The process is based on heuristic search algorithms to obtain a solution that meets
requirements. The rationale under the decision of using this kind of algorithms is that
they are well suited for finding a solution starting from a set of candidate ones. This is
especially useful in the SeaClouds domain problem, where replanning calls (i.e., the
Planner executions done at the application’s runtime due to some problem in its
current deployment) ask for a new deployment solution. In order to avoid
reconfiguring the whole application after a problem in some module is found, it is
advisable that the planner does not propose a solution that is completely different
from the currently deployed configuration.

It is worth noting that this is not the only strategy that could be adopted. The
optimization could be also based on other types of approaches in which the maximum
“distance” between the current deployment that is no longer suitable and the
deployment proposed as a new solution is included as an additional constraint.
However, heuristic searches already adopt this concept in their basic definition.

Based on the quality requirements of SeaClouds case studies, the metrics that the
optimization activity considers are availability, performance and cost.

Figure 12 shows the decisions that are made by the optimizer, depicting with blue dots
the variation points in the problem it faces. Each Base Module in the application (being
x0 of them) can be executed in one or more cloud provider zones. Therefore, if there is
x1 locations, a module can execute in 2x1 possibilities. In each location, it may require
either IaaS or PaaS resources offered by the cloud. This adds another variation point
where two candidate alternatives exist.

Figure 12. Initial approach for the optimization process

For the alternative of IaaS utilization, the optimizer has to decide the type of virtual
machines to use in the selected zone, and the quantity of them. This variation point is
denoted with x2. Being x2 type of machines, and the budget allowing the use of up to ki
VMs of type i (being i in the interval [1, ...,x2]), the number of alternatives in this
variation point are ∑ . For the alternative of PaaS utilization, the optimizer has to
decide the values of the parameters that the platform allows to configure.

 45 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Due to the amount of variation points and the quantity of alternatives of each point, a
single heuristic algorithm may not be able to manage the execution in order to find a
suitable solution. To solve this challenge, the optimization algorithm is split up into two
steps that are executed iteratively. These steps are depicted in Figure 13 and explained
in the following.

Figure 13. Two-steps optimizer

The first step is in charge of proposing a distribution of the Base modules into cloud
provider’s locations. This step uses a heuristic search among the candidate
distributions. The objectives of this heuristic search is to find a module distribution
that satisfies the availability requirement at a bounded cost.

The second step uses a heuristic search to decide the type of resource to use in each of
the decided locations. In case of deciding for IaaS, it also searches for the suitable set
of virtual machines to use. In case of deciding for PaaS, it searches for a suitable
platform configuration. The objective of this heuristic searches is to find the set of
resources for each location that allow the application to satisfy its performance
requirements at a bounded cost.

If the second step cannot find a suitable solution the process iterates from the first
step. The first step will receive information from the second step regarding the
locations that caused the most important troubles in terms of a mixture of
performance and cost. In this way, the first step will give less weight to such
association of modules with locations, then reducing the likelihood that these locations
are proposed again when generating the next distribution of modules over locations.

If the second step succeeds, the iterative heuristic process finishes and all the outputs
of the optimization process have been generated, except for the scaling mechanisms.

A high-level algorithm for the optimization problem is shown in the following, where

 46 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

searchNeighborBetterThanCandidatePlan method implements the two step heuristic
search:

candidatePlan=generateInitialRandomCandidate();
bestPlan=candidatePlan;

while (not stopCondition) loop

newPlan=searchNeighborBetterThanCandidatePlan();
if(fitness(newPlan)>fitness(candidatePlan)) then
 candidatePlan=newPlan;
else
 if(fitness(candidatePlan)>fitness(bestPlan)) then
 bestPlan=candidatePlan

end if;
candidatePlan=generateInitialRandomCandidate();

end if;
end loop;
return bestPlan;

Note: an example of stopCondition is “Certain number of cycles elapsed without
improving bestPlan”

Finally, if the algorithm succeeds searching for a solution that satisfies the quality
requirements, the scaling mechanisms of each module that executes in IaaS are
created, taking into account the cost of running the chosen solution and the maximum
budget for the application.

Example:
For the sake of understandability, next paragraphs describe a simple example of the
optimizer execution.

Given an application that consists of two modules M1 and M2 where each request to
M1 also requires an execution of M2, as shown in Figure 14. The demand of a request
in isolation requires 0.25 seconds in M1 and 0.2 seconds in M2.

Figure 14. Example of system properties provided in the abstract application model and operational profile.

The usual workload of the application consists of 200 requests per minute. The quality
requirements state that:

● Requests have to be answered in less than 1 second in average.
● The system availability should be higher than 99.9%.

 47 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

● The system costs should not exceed 200€ per month.

The input provided by the matchmaking activity for M1 states that there are two cloud
providers for allocating it, offering 5 and 4 different options as IaaS respectively. In
turn, for M2 there are also two cloud providers, the first provider offering the first 2
PaaS options and 2 IaaS options, while the second provider offers 1 PaaS option and 4
IaaS options. Each of the options are associated with the information regarding their
quality in terms of the performance, availability and cost they provide. The scheme in
Figure 15 summarizes this information.

Figure 15. Example of options for each module

Regarding the rest of inputs, the maximum parallelization level of modules states that
both M1 and M2 are fully parallelizable, and the network speed between providers has
a default value (e.g., 20 MB/s).

An example trace of the behavior of the heuristic algorithm is the following:

● It finds a local optimum by proposing the utilization of Provider1 for M1 and
Provider2 for M2 in its first step, and in the utilization of three instances of the
option “IaaS T4” for M1 and “PaaS C1” for M2. This local optimum solution is
represented in Figure 16.

Figure 16. Local optimum found by the heuristic search

 48 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

● The fitness function states that the solution is not suitable because it satisfies
the performance and cost requirements but not the availability one.

● The algorithm continues the iteration to find another local optimum. In this
case it still proposes to execute M1 in Provider1 using three instances of “IaaS
T4”, but now M2 is executed in “Provider 1” using one instance of “IaaS T1”.
This local optimum is represented in Figure 17.

Figure 17. Alternative local optimum found by the heuristic search

● The fitness function in this case states that the local optimum is suitable
because it satisfies all the quality requirements and gives it a score based on
the values of each of its quality attributes.

● The algorithm continues iterating to find other local optimum satisfying all the
quality requirements and having a higher score than the one already obtained.
The algorithm will stop when it iterates a certain number times without having
found another optimum that improves the score of the current best solution. In
that case, it will return the best solution found during all the process.

4.2.3 Abstract Deployment Plan

The ADP generated as output by the planner describes the distribution of the
application modules into multiple cloud provider services, so that user requirements
are satisfied. Specifically, it includes the concrete services associated with each Base
module and the policies to manage the scaling mechanism of each module, to
guarantee both performance and cost requirements. The plan is a part of the
Deployable Application Model introduced in section 2.1.

We have already mentioned in this document that TOSCA defines a well-built
specification and best practices for describing a full-detailed application topology. The
standard provides flexibility to describe any application module and its properties,
requirements and capabilities. Thanks to these two last features, TOSCA defines a
methodology to describe the relationships between modules in a generic way, but
maintains the configurability and the requirements to establish and manage the
relationships among modules. To this end, we propose to exploit the TOSCA language
to define the ADP. Nevertheless, we consider the XML specification could be hard to
understand by a regular end-user. Therefore, we propose to base our ADP

 49 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

specification on the TOSCA simple profile specification (the first TOSCA YAML) [22],
which is more human-readable.

Then, an example of ADP (considering aspects of the Nuro early case) is reported in the
following by exploiting the TOSCA simple profile specification.

tosca_definitions_version: tosca_simple_1.0
description: TOSCA simple profile for nuro web application:a php

custom
> application, a web server, and mysql database on two different

services.
inputs:
 db_name:
 type: string
 description: The name of the database.
 db_user:
 type: string
 description: The username of the DB user.
 db_pwd:
 type: string
 description: The database admin account password.
 db_port:
 type:integer
 description: Port for the MySQL database
 mysql_version:
 type: integer
 description: Version of mysql DB
 php_version:
 type: integer
 description: Version of php
node_templates:
 nuroCaseStudy:
 type: seaClouds.nodes.WebApplication.PHP
 properties:
 version: { get_input: php_version}
 requirements:

- host: webServer

- database_endpoint: nuroDatabase

 interfaces:
 create: php_install.sh

 configure: php_configure.sh
start: php_start.sh

 nuroDatabase:
 type: seaClouds.nodes.Database.MySQL
 properties:
 port: { get_input: db_port }

 50 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 db_name: { get_input: db_name }
 db_user: { get_input: db_user }
 db_password: { get_input: db_pwd }
 version: { get_input: mysql_version}
 capabilities:
 database_endpoint:
 requirements:

- host: amazon.i2.xlarge

 interfaces:
 create: mysql_db_install.sh
 start: mysql_db_start.sh
 configure: mysql_db_configure.sh
 webServer:
 type: seaClouds.nodes.WebServer.Apache
 requirements:

- host: hp-standard.small

 interfaces:
 create: webserver_install.sh
 start: webserver_start.sh

 amazon.i2.xlarge:
 type: seaClouds.nodes.Compute
 properties:
 # compute properties (flavor)
 disk_size: 800
 num_cpus: 4
 mem_size: 30.5
 # host image properties
 os_type: Linux

region: USeast
cost: 0.853

 hp.standard.small:
 type: seaClouds.nodes.Compute
 properties:
 # compute properties (flavor)
 disk_size: 10
 num_cpus: 2
 mem_size: 2
 # host image properties
 os_type: windows
 region: USeast
 cost: 0.09

group:
 webserver_group:

 51 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 #the nuroCaseStudy and the webServer nodes will be scaled

together
 members: [nuroCaseStudy, webServer]
 policies:

Specific policy definitions are considered domain specific in

TOSCA
 - my_scaling_policy:
 #example of Brooklyn policy embedded in TOSCA simple profile
 brooklyn.policies:

 - policyType: brooklyn.policy.autoscaling.AutoScalerPolicy

 brooklyn.config:

 metric: $brooklyn:sensor

("brooklyn.entity.webapp.DynamicWebApp
Cluster", "webapp.reqs.perSec.windowed.perNode")

 metricLowerBound: 10

 metricUpperBound: 100

 minPoolSize: 1

 maxPoolSize: 5

node_types:
 seaClouds.nodes.WebApplication.PHP
 derived_from: tosca.nodes.WebApplication
 properties:
 version:
 type: string
 requirements:
 - host: seaClouds.nodes.WebServer.Apache
 - database_endpoint: seaClouds.nodes.Database.MySQL

 seaClouds.nodes.Database.MySQL:
 derived_from: tosca.nodes.Database
 properties:
 version:
 type: string
 requirements:
 - host: seaClouds.nodes.Compute
 capabilities:
 database_endpoint: seaClouds.capabilities.DBendpoint.MySQL

 seaClouds.nodes.WebServer.Apache
 derived_from: tosca.nodes.WebServer
 requirements:

- host: seaClouds.nodes.Compute

 seaClouds.nodes.Compute
 derived_from: tosca.nodes.Root

 52 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

 properties:
 # compute properties
 num_cpus:
 type: integer
 constraints:
 - greater_or_equal: 1
 disk_size:
 type: integer
 constraints:
 - greater_or_equal: 0
 mem_size:
 type: integer
 constraints:
 - greater_or_equal: 0
 # host image properties
 os_type:
 type: string

 # Compute node’s primary IP address
 ip_address:
 type: string
 capabilities:
 host:
 type: Container
 containee_types: [tosca.nodes.SoftwareComponent]
outputs:
 website_url:
 description: URL for PHP application.
 value: { get_property: [hp.standard.small, ip_address] }

 53 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

5. Preliminary Prototype Description

Based on the specification of the Planner in the previous section, which includes a
matchmaking process and then an optimization process, in this section, the
preliminary design and descriptions of the Planner component are provided, which
include the first design of UML class diagram and the related APIs.

5.1 UML Class Diagram

Figure 18. UML class diagram of the Planner

The classes in this diagram are divided into two layers, namely, data description layer
and business logic layer, which will be described in detail below.

Data description layer:

● cApplication: describe the cloud application provided by the user, which
consists of classes cModule, cQoSRequirement, and cTopology.

● cModule: describe the modules that compose the cloud application.
● cQoSRequirement: describe the QoS requirements of modules and/or the

whole application.

 54 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

● cTopology: describe the topology of cloud application and related operations,
i.e., the relationships among the modules that compose the application.

● cCloudService: describe the cloud offerings advertised by cloud providers
(obtained from the Discoverer component).

● cList: class of (linked) list, which is used to store the candidate cloud offerings
for each module.

● cPair: store the pair of module and its corresponding cloud offering, and also
other related information. This can be a class or a structure, depending on the
convenience.

● cSolution: can be inherited from the cList class, and represents the resulted
(optimal) solution(s) that is composed of cPair objects. In addition, it also stores
the scores of the resulted solution(s).

Business logic layer:

● cMatchmaking: the class that implements the matchmaking service. Given a
set of cCloudService and a cApplication as inputs, the matchmaking process will
generate a cList for each cModule in the application.

● cScore: the class for calculating scores for the candidate cloud offerings
(considering together the price, availability, performance and so on).

● cRank: for a module (cModule), rank the candidate cloud offerings list (cList) in
accordance with the score, or select n cloud offerings with the highest scores
and rank them.

● cOptimization: the class that implements the optimization process. Given a
cApplication and the cList for each cModule in the application, the optimization
process will generate the optimal solution(s).

● cManagementPolicy: set the management policies (e.g., scaling policies) for
each resource (or cloud zone).

In this design, the class cApplication consists of multiple cModule(s) and
cQoSRequirement(s), and the relationships among these cModule(s) are described by
cTopology, and it represents the application to be deployed on (multiple) clouds.

cApplication, and cList are the inputs of cRank, which calls cScore to calculate the
related “score” for all the candidate cloud offerings of each module, considering the
factors as availability, performance and cost, and then output an ordered list of these
candidates.

cOptimization takes the ordered list of cloud offerings for every module as input, and
implements a combined optimization process to get the optimal or suboptimal
solutions, which is stored in cSolution.

Class cSolution is inherited from cList, and it contains multiple pairs of modules and
their corresponding cloud offerings (cPair), which represents a distribution of
application modules onto (multiple) available clouds.

At last, cManagementPolicy is used to set the scale policies for each cloud zone in
cSolution.

 55 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

In addition to these classes described above, there is also another wrapper class
cOptimizer in this design, whose inputs are cApplication (including cModule,
cQoSRequirements, and cTopology) and cList, while the cSolution is its output.

5.2 API Design

The initial API design of the planner component is as follows, and more detailed
information can be found from deliverable D4.2.

Methods Parameters Output Description

GET
CandidateList

Application,
CloudService

CandidateList Gets the list of candidate
clouds offerings for each
module

GET Solution Application,
CloudService,
CandidateList

ResultedSolution Gets the solutions and
returns

GET
SimilarSolution

CurrentSolution NewSolution Gets a solution that is not
very different from the
current used, and this will
be useful for replanning

POST
Application

Application The application will be
deployed

POST
Reconfiguration
Confirmation

Application The reconfiguration plan is
approved.

Table 2. The initial API design of the planner

 56 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

6. Concluding Remarks

In this deliverable, we have presented the first specification of the SeaClouds discovery
functionality, of the SeaClouds formalism to specify properties and requirements, of
the SeaClouds application topology model and of the SeaClouds planning policies. The
inputs needed by the platform are analysed and a SeaClouds application meta-model is
proposed to represent all the related information. The OASIS standard TOSCA is
employed to represent the application topology, and a possible mapping from the
proposed application meta-model into TOSCA representations is also presented. To
facilitate the discovery of capabilities and services offered by cloud providers, a cloud
meta-model is proposed and also mapped into TOSCA representations. The first
specification of the planner including a matchmaking process and an optimization
process is presented, and a very early prototype design of the planner component is
also provided.

In the next deliverable, the second and final documentation of the SeaClouds discovery
functionality, of the SeaClouds formalism to specify properties and requirements, of
the SeaClouds application topology model and of the SeaClouds planning policies will
be delivered.

 57 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Annex:

A. Background on TOSCA

In this section, we would like to provide a simple and compact introduction to TOSCA
(OASIS Topology and Orchestration Specification for Cloud Applications) [19], which
aims at solving the problem of deploying and flexibly managing complex multi-service
applications in the cloud, by providing a language to describe and manage complex
cloud applications in a portable, vendor-agnostic way. The following descriptions are
mainly taken from [19, 20].

TOSCA provides an XML-based modeling language, whose purpose is to allow
formalizing the structure of each cloud application as a typed topology graph, and the
management tasks as plans. In TOSCA, an application is represented as a
ServiceTemplate, which is shown in the following figure. The ServiceTemplate is in turn
composed by a TopologyTemplate and (optionally) by some management Plans.

Figure 19. TOSCA Service Template

In this representation, the topology of a multi-component application is represented
by means of TopologyTemplates. A TopologyTemplate is essentially a typed graph
whose nodes are the application components, and whose edges are the relations
between these application components. Syntactically speaking, the application
components and their relations are represented by means of typed NodeTemplates
and RelationshipTemplates, respectively.

Each application component appears in the topology as a NodeTemplate, and each
NodeTemplate is in turn typed. This is because the purpose of NodeTemplates is to
define the application-specific features of components (e.g., actual property values,

 58 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

QoS, etc.), while the purpose of the corresponding types is to describe the structure of
the features to be specified.

The structure of the features exposed by an application component is defined by
means of NodeTypes. More precisely, a NodeType specifies the structure of the
observable properties of an application component, the management operations it
offers, the possible states of its instances, the requirements needed to properly
operate it, and the capabilities it offers to satisfy other components requirements.
Syntactically speaking, properties are described with PropertiesDefinitions, operations
with Interface and Operation elements, requirements with RequirementDefinitions (of
certain RequirementTypes), and capabilities with CapabilityDefinitions (of certain
CapabilityTypes).

Moreover, NodeTypes do not specify which are the artifacts required to instantiate
and operate application components, since that is the purpose of
NodeTypeImplementations. Each NodeTypeImplementation refers to the NodeType
whose implementation is under definition and specifies its DeploymentArtifacts and
ImplementationArtifacts. The former are the contents (viz., ArtifactTypes and
ArtifactTemplates) needed to materialize instances of application components, while
the latter are those which implement management operations offered by application
components.

With respect to the relations between application components, they can be modeled
by means of RelationshipTypes, RelationshipTypeImplementations, and
RelationshipTemplates. A RelationshipType defines the structure of a generic
relationship between a ValidSource (i.e., a NodeType or a node’s RequirementType)
and a ValidTarget (i.e., a NodeType or a node’s CapabilityType). It also allows to
describe the operations which can be performed on the source and on the target of
the relationship (via SourceInterfaces and TargetInterfaces, respectively), its
observable properties, and the possible states of its instances. Each RelationshipType
requires to be connected with the artifacts implementing the operations it offers. This
is the purpose of RelationshipTypeImplementations, each of which refers to a
RelationshipType and specifies its ImplementationArtifacts. More precisely, a
RelationshipTypeImplementation links each operation offered by a NodeType with the
ArtifactTypes and ArtifactTemplates implementing it. As for nodes, types and type
implementations only describe relations in a generic way. Once placed in the
topological description of a certain application, they become application-specific and
thus require to be described by means of RelationshipTemplates (to describe
application-specific features).

TOSCA allows artifacts to represent contents of any type (e.g., script, executable
program, installable image, configuration file, library, etc.). This requires to describe
artifacts along with the metadata needed to properly access them. The structure of
such metadata is described by means of ArtifactTypes, while links to concrete artifacts
(and values of invariant metadata) that can be specified by employing
ArtifactTemplates.

 59 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

With respect to management plans, TOSCA prescribes to use workflows to describe
Plans (so as to leverage of their suitability to handle errors, exceptions and human
interactions), but it does not mandate the use of specific workflow language.
Furthermore, Plans are distinguished on the basis of their planType. There are only two
predefined types of plans: the BuildPlan type models plans which initially create a new
instance of a service template, while the TerminationPlan type is for plans used to
terminate the existence of a service instance.
For non-functional features, TOSCA employs policies to describe non-functional
behavior and/or quality-of-service (QoS) that an application and its components can
declare to expose. Similar to the other entities in the TOSCA standard, a policy has an
abstract PolicyType definition and is instantiated by defining a PolicyTemplate. While
the PolicyType describes the structure and required parameters of a policy, the
PolicyTemplate is used to define a specific policy instance. ServiceTemplates,
NodeTemplates, and RelationshipTemplates can then declare their non-functional
features by referring the PolicyType and/or PolicyTemplate describing them.

In addition, a ServiceTemplate can also describe the functional and non-functional
features it exposes externally. More precisely, the (optional) BoundaryDefinitions
element allows to specify the properties, capabilities, requirements and operations of
internal components which are externally visible. It also allows to expose management
plans as operations and to describe the non-functional properties of the complex
application.

TOSCA also prescribes the format to archive application specifications along with the
installable and executable files needed to properly instantiate the specified
applications. This is because the modeling language described above only allows
developers to specify the application topology and its management and to give it in a
Definition.tosca document. Such document must be packaged together with the
artifacts implementing its components so as to make all such artifacts available to the
execution environment.

To this end, the TOSCA specification defines an archive format called CSAR (Cloud
Service ARchive) to package application specification together with concrete
implementation and deployment artifacts. A CSAR is a (compressed) zip file containing
at least the Definitions and TOSCA-Metadata directories. The Definitions directory
contains one or more Definitions.tosca documents. These documents contain the
TOSCA definitions describing the cloud application. More precisely, exactly one of
them must contain the ServiceTemplate defining the structure and behavior of the
whole cloud application, while the others can be devoted to supporting definitions (so
as to modularize the application specification). Additionally, CSARs can also be devoted
to contain TOSCA definitions to be reused in other contexts. For instance, a CSAR
might be used to provide a set of NodeTypes (with their corresponding
implementations) to be employed as building blocks while specifying new cloud
applications. A TOSCA-Metadata directory contains the TOSCA.meta file. Its purpose is
to describe metadata about the other files in the CSAR by means of blocks, which in
turn consist of a set of name-value pairs. More precisely, the first block of the

 60 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

TOSCA.meta file provides metadata about the CSAR itself (e.g., version, creator, etc.),
while each other block points to a file in the CSAR and describes its metadata.

An application specification is packaged in a CSAR archive with the purpose of
deploying it on TOSCA-compliant cloud platforms, which can offer TOSCA containers to
process CSAR archives, and thus to deploy and operate the application. TOSCA
containers can deploy applications by processing the CSAR archives in two different
ways. On one hand, Imperative Processing takes the CSAR and deploys the application
according to the workflow defined as a BuildPlan in the corresponding
ServiceTemplate. On the other hand, Declarative Processing deploys the application by
trying to automatically excerpt a deployment plan from the application’s
TopologyTemplate.

 61 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

B. Analysis of Common Services Offered by Cloud Providers

Cloud solutions allow customers to develop cost-effective applications by exploiting
the self-adaptation capabilities of cloud services. In order to exploit these properties,
the identification of common offered cloud services is essential. Moreover, the scaling
policies and the pricing schemes adopted by cloud providers need to be characterized.
To this end, in this Annex we offer an analysis of these capabilities (services, prices,
policies), with the aim of identifying common characteristics in order to describe them
with a suitable representation of a cloud meta-model.

We analyze separately PaaS and IaaS providers, since they offer services at different
levels.

Analysis of PaaS capabilities
Among the existing PaaS provider, we have selected four providers (already supported
by the Cloud4SOA project), namely RedHat Openshift, CloudBees, Heroku and Cloud
Foundry. The last one is an open source PaaS platform that can used to build
customized PaaS.

Usually, PaaS providers offer environments for application development and hosting,
which automates the provisioning, management and scaling of applications. A PaaS
provider generally manages a set of servers, in which end-user applications run.
Multiple servers are managed by a broker, which coordinates orchestration and
automation. Each server provides a multi-tenant environment, which is shared by end-
user application. The isolation of each application is guaranteed since they run on a
secure container inside the server. This container is the basic unit of compute
resources that a PaaS provider offers.

RedHat Openshift
General capabilities: RedHat OpenShift Origin supports several languages (java, node,
perl, php, python, ruby, etc.) and frameworks (rack, wsgi, psgi, node.js, rails, django,
jboss, tomcat, etc.). In addition, the most common databases can be used, both
relational and non-relational (mysql, postgresql, mongodb, amazon rds).

The secure container inside an OpenShift instance is called Gear. An end-user
application normally needs an environment, which provides the languages and services
the application needs. These modular entities are called Cartridges in OpenShift.
Cartridges can be web frameworks, databases, monitoring services, or connectors to
external backends and they are deployed to one or more gears. Web and database
cartridges get their own gears, while cartridges for logging and monitoring will have
access to all gears.

Scaling policies: OpenShift supports the manual scaling as well as auto-scaling
applications. The OpenShift infrastructure monitors incoming web traffic and can
automatically add or remove application gears to handle changes in request volume.
When a scalable application is created, this is set to scale automatically depending on
the load it receives. In particular, the following thresholds can be established: 1) Scale

 62 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

up if the number of concurrent requests exceed 90% of max concurrent requests over
one period. 2) Scale down if the number of concurrent requests fall below 49.9% of
max concurrent requests over three consecutive periods. These thresholds cannot be
currently configured: max concurrent requests is fixed to 10 requests, and a period is
20s.

Pricing schemes: OpenShift provides three monthly plans (namely free, bronze, silver)
with different characteristics. The free plan is limited to three small gears and 1GB
storage per gear, but it is totally free and it is available worldwide. Silver and bronze
plans give the user more flexibility (small, medium and large gears, more storage
allowed, etc). The silver plan provides all the features of a bronze plan plus the Red
Had premium support. Both silver and bronze plans are available in North America (the
U.S. and Canada) and Europe (EU member states, Iceland, Israel, Norway, Switzerland,
and Russia).

In Table 3 the main characteristic of each gear together with its price are reported. The
additional storage cost is set to $1.00/GB/month.

Gear
size*

RAM
(MB)

Base Storage
(MB)

cost
($ per hour)

small 512 1000 0.02

medium 1000 1000 0.05

large 2000 6000 0.10

Table 3. OpenShift pricing scheme for compute resources

Heroku
General capabilities: Heroku offers a PaaS provider to build maintainable and scalable
applications without worrying about the infrastructure. The supported languages are
Ruby, Node.js, Python, Java, PHP, Clojure and Scala. Moreover, Heroku supports
PostgreSQL as database-as-a-service.

The secure container inside a Heroku instance is called Dyno. A Dyno is like a
virtualized UNIX container to run user application components. Three different Dyno
sizes are available, each size having different memory and CPU characteristics.
Languages or frameworks support is offered by means of Buildpacks: Ruby, Python,
Java, Clojure, Node.js and Scala are all implemented as buildpacks.

Scaling policies: Heroku does not support automatic scaling. Applications on Heroku
can be scaled instantly from the command line or Dashboard. Each application has a
set of running dynos that can be scaled up and down. Dynos can also be scaled
vertically, providing them with more memory and CPU share.

Pricing scheme: Heroku's pricing is based on resources actually used. Dynos can be
scaled and databases can be added. In Table 4 the characteristics and pricing for dynos
are reported.

 63 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Dyno* RAM (MB) Base Storage
(MB)

cost
($ per hour)

1x 512 0 0.05

2x 1024 0 0.10

Px 6000 0 0.80

Table 4. Heroku pricing scheme for compute resources

Heroku’s PostgreSQL database is available in multiple tiers (Hobby, Standard, Premium
and Enterprise) and each tier allow the user to choose among a variety of plans. The
different plans with their characteristics and pricing are summarized in Table 5.

Tier/plan DB size
(GB)

Row
limit (K)

Max
queries
/hours

Max
connecti

ons

Expected
Availability

(%)

Cache
(GB)

cost
($ per month)

SLA

hobby/free - 10 - 20 99.5 0 0 no

hobby/basic - 10000 - 20 99.5 0 9 no

standard/0 64 no - 60 99.9 400 50 no

standard/2 256 no - 200 99.9 1700 200 no

standard/4 512 no - 400 99.9 7500 750 no

standard/6 1024 no - 500 99.9 34000 2000 no

standard/7 1024 no - 500 99.9 64000 3500 no

premium/0 64 no - 60 99.95 400 200 no

premium/2 256 no - 200 99.95 1700 350 no

premium/4 512 no - 400 99.95 7500 1200 no

premium/6 1024 no - 500 99.95 34000 3500 no

premium/7 1024 no - 500 99.95 64000 6000 no

enterprise * * * * * * * yes

*Enterprise plans, in addition to features seen in premium databases, come with a Service Level Agreement: if
availability is longer than expected that month is free.

Table 5. Heroku pricing scheme for storage resources

Cloud Foundry (Open Source)
General capabilities: Cloud Foundry is an open PaaS and provides a choice of clouds,
frameworks and application services. As an open source project, there is a broad
community both contributing and supporting Cloud Foundry. The languages supported
are java, ruby, node, scala, go, groovy and several frameworks can be chosen: spring,
rails, sinatra, play, tomcat.

 64 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

The secure container is called Warden in CloudFoundry and manages isolated,
ephemeral, and resource-controlled environments. These isolated environments can
be limited in terms of CPU usage, memory usage, disk usage, and network access. The
only currently supported OS is Linux.

Scaling policies: there are two levels at which Cloud Foundry scales, whether
automatically or not. The first is at the Cloud Foundry infrastructure level and it is the
responsibility of the PaaS operator that implements Cloud Foundry. The operator
needs to monitor the load on the various servers and launch additional or terminate
idle ones as appropriate.

The second level is at the individual application level and is primarily expressed in how
many app execution engines are "running" the application and it is the responsibility of
each application's owner.

Analysis of IaaS capabilities
The following IaaS will be considered: Amazon Web Services, Google Cloud Platform,
IBM SoftLayer, HP Cloud, Rackspace Cloud, Apache CloudStack, RedHat OpenStack,
and Microsoft Azure (optional).

Compute resources
IaaS capabilities are usually delivered in form of Virtual Machines that includes
different types of resources. The price of an offering is affected by the type and the
amount of a resource. Common characteristics for compute resources are reported in
the Table 6.

 AWS Google SoftLayer HP Cloud RackSpace CloudStack OpenStack Azure

vCPU yes yes yes yes no no yes yes

memory yes yes yes yes yes yes yes yes

disk yes - yes yes yes yes yes yes

image
(OS)

yes yes yes yes yes yes yes yes

id yes yes yes yes no yes yes yes

location yes yes yes yes yes yes yes yes

price yes yes yes* yes yes* - - yes*

*prices are provided through a calculator
Table 6. Common characteristics for compute resources

Storage resources
There are three types of storage: block, file, and object. Each type offers their own
advantages and has their own use cases.

 65 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

Block Storage: is persistent storage organized into unstructured "blocks", each the
same length. There is no concept of “file” at this level. Generally, using block storage
offers the best performance, but it is low-level. Block storage can be either "locally
attached", or it can be "network" attached, in a SAN. An ordinary disk drive, RAID
array, or USB storage key are examples of locally attached "block storage".

Block storage devices typically are formatted with a filesystem, such as Linux's ext3 or
btrfs, or Microsoft's FAT32 or NTFS.

File Storage: provides access to a file system. This is the most familiar kind of storage.
Users of file storage have access to files and can read and write to either the whole file
or a part of it. File systems are what operating systems provide on all of our personal
computers. In a shared environment, file storage is often seen as a network drive.

Object Storage: does not provide access to raw blocks of data, nor offer file-based
access. Object storage provides access to whole objects, or blobs of data and generally
does so with an API specific to that system. Unlike file storage, object storage generally
does not allow the ability to write to one part of a file. Objects must be updated as a
whole unit (Amazon S3, Rackspace Cloud Files). Object storage excels at storing
content that can grow without bound. Perfect use cases include backups, archiving,
and static web content like images and scripts. One of the main advantages of object
storage systems is their ability to reliably store a large amount of data at relatively low
cost.

Common characteristics that can be specified for storage resources are reported in
table 7 and Table 8.

Block
Storage

AWS Google SoftLayer HP Cloud RackSpace CloudStack OpenStack Azure

location yes - - no no - - yes

size yes - - yes yes yes yes yes

operations yes - - yes no - - yes

snapshots yes - - yes no - - no

volume
backups

yes - - yes no - - no

Table 7. Common characteristics for block storage resources

Object
Storage

AWS Google SoftLayer HP Cloud RackSpace CloudStack OpenStack Azure

location yes yes no no no - - yes

size yes yes yes yes yes yes yes yes

 66 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

operations yes yes yes yes no - - yes

monthly
data
transfer*

yes yes yes yes yes - - yes

*some providers refer to monthly data transfer as bandwidth

Table 8. Common characteristics for object storage resources

 67 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

C. Resource Allocation Strategies in Cloud Computing

In this Annex, we have summarized approaches appeared in the scientific literature
that deal with resource allocation challenges, which are strongly related to the ones
faced by the SeaClouds optimization activity.

Specifically, the table below (Table 8)1, summarizes the approaches according to:
(a) The application domain, i.e., if a single cloud or a multicloud environment is

considered;
(b) The cloud level interested by the resource allocation, i.e., if the resource is at IaaS

level, or PaaS level or SaaS level;
(c) The considered QoS Requirements in the selection and allocation of resources, e.g.,

cost, response time, utilization, availability, and so on;
(d) QoS evaluation methods;
(e) The adopted allocation algorithm;
(f) The validation of the proposed approaches.

Paper Domain Level QoS Req QoS Eval Allocation
algorithm

Validation

[1] 2011 Multicloud IaaS max
resource
usage, max
availability,
min cost

multiobjective
scheduling
algorithm
(including
migration
aspect)

genetic
approach

-web-based
application
-Simulation
(no real
data)

[2]2009 Multicloud IaaS min cost
(both on-
demand and
reserved)

Stochastic
Optimization
model
(no migration)

stochastic
integer
programming
2-stages
recourse

academic
example,
extensive
simulation

[3] 2013 singlecloud IaaS min energy,
min network
traffic, max
revenue

multiobjective
optimization
(no migration)

memetic
algorithm

real data
(private,
amazon,
rackspace)
no real
application,
several
scenarios
generated
randomly

[4] 2012 Multicloud IaaS performance
, cost, load
balancing,

optimization
max capacity
with constraints

Integer
programming
(Ample/Cplex)

experimenta
tion with
data from

1 Goal of the Table 9 is to show the main and recent trends in the field rather than present an
exhaustive analysis of the literature, which is out of the scope of this deliverable.

 68 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

on hw
configuration,
number of VM,
load balancing
(no migration)

amazon EC2-
US, EU,
ElasticHost

[5] 2011 Multicloud IaaS cost
(different
prices
mechanisms)

optimization
problem
(no migration)

integer
programming

experiments
with data
from
amazon

[6] 2011 Multicloud IaaS min cost or
max capacity

optimization
problem extend
[4] with VM
migration

integer
programming

experimenta
tion with
data from
amazon EC2-
US, EU,
ElasticHost

[7] 2013 Multicloud IaaS resource
utilization,
max revenue

Markov Decision
process

simple-value
iteration
method

academic
example

[8] 2014 Multicloud IaaS performance
, cost

all possible
resource
allocation,
ordering
solutions by
cost, exhaustive
search

ad hoc
algorithm

realistic data
from
benchmark
[11],
comparison
single/multip
le clouds

[9] 2014 single cloud IaaS min cost,
response
time,

optimization
problem

queueing+
integer
programming+
local search

experimenta
tion with
data

[10]
2014

single cloud IaaS cost
(different
prices
mechanisms)
, revenue

adaptation plan
algorithm based
on heuristic

queueing
theory

experimenta
tion with
real
workload
data

[12]
2014

single cloud IaaS autoscaling
performance

heuristic rule-based
heuristic-
based, QN

simulation

[13]201
2

single cloud autoscaling,
performance

Rule based
algorithm

QN+greedy
algorithms

simulation

[14]
2014

single cloud IaaS utility
functions

topology-based
optimization

partial
ordering of
the viable
topologies
(theoretical
work)

simulation

Table 9. Overview of related work

 69 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

In the following we shortly describe the main characteristics of these approaches.
Concerning the domain, we have mainly reported the approaches related to multi-
cloud environments, which are the SeaClouds target [1,2,4,5,6,7,8]. For the sake of
completeness, also single cloud solutions [2,9,10,12,13,14] have been studied, but only
few of them have been included in the Table to show the main trends in the area. One
of the main weakness point of the existing approaches, concerns the level dimension:
to the best of our knowledge, only IaaS solutions have been proposed so far for the
management of resource allocation in the cloud.

As concerns the quality requirements, most of the approaches focus on the
minimization of the overall cost [1,2,4,5,6,7,8,9,10], some of them include availability
[1], performance [4,8,9,12,13], resource utilization [1,6,7], load balancing [4] or
network traffic [3] and their trade-off. To be effective, QoS evaluation approaches
should rely on models representing the systems in an accurate/realistic way. Several
approaches reported in Table 2 rely on the definition of simple aggregate QoS
functions (like sum, product, max, and average) that can be easily defined and
managed. However, due to dependencies between different applications or between
applications and resources these aggregation functions could lead to quality
estimation that represent optimistic (or pessimistic) bounds rather than a realistic
estimation.

Most of the adopted solutions rely on the definition of a (multi-objective) optimization
problem [1,2,3,4,5,6,9,14], other approaches adopt techniques based on markov
Decision processes [7], heuristic definition [10,12], or ad-hoc solution [8,13].
Accordingly, the allocation algorithms use integer programming [2,4,5,6,9], genetic
algorithms [1,3], ad-hoc algorithms [8,12,13] and queueing theory [9,10,12,13].

An investigation of the validation strategies, shows that several approaches perform
experiments based on generated examples [1,2,7] or apply a case study based
validation [3,4,5,6,8,9,10,12,13,14]. Some of them use real data [3,4,5,6,8,9,10] while
others simply rely on simulation [12,13,14].

 70 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

References

[1] Marc E. Frincu and Ciprian Craciun. 2011. Multi-objective Meta-heuristics for

Scheduling Applications with High Availability Requirements and Cost Constraints in

Multi-Cloud Environments. In Proceedings of the 2011 Fourth IEEE International

Conference on Utility and Cloud Computing (UCC '11). IEEE Computer Society,

Washington, DC, USA, pp. 267-274. DOI=10.1109/UCC.2011.43

http://dx.doi.org/10.1109/UCC.2011.43

[2] Sivadon Chaisiri, Bu-Sung Lee, Dusit Niyato: Optimal virtual machine placement

across multiple cloud providers. APSCC 2009: 103-110.

[3] Fabio López Pires and Benjamín Barán. 2013. Multi-objective Virtual Machine

Placement with Service Level Agreement: A Memetic Algorithm Approach. In

Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud

Computing (UCC '13). IEEE Computer Society, Washington, DC, USA, pp. 203-210.

DOI=10.1109/UCC.2013.44

[4] Johan Tordsson, Rubén S. Montero, Rafael Moreno-Vozmediano, and Ignacio M.

Llorente. 2012. Cloud brokering mechanisms for optimized placement of virtual

machines across multiple providers. Future Gener. Comput. Syst. 28, 2 (February 2012),

pp. 358-367.

[5] J.L. Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente. Dynamic

Placement of Virtual Machines for Cost Optimization in Multi-Cloud Environments. In

Proceedings of the 2011 International Conference on High Performance Computing &

Simulation (HPCS 2011), pp. 1-7, July 2011.

[6] Wubin Li; Tordsson, J.; Elmroth, E., "Modeling for Dynamic Cloud Scheduling Via

Migration of Virtual Machines," In Proceedings of the 2011 IEEE Third International

Conference on Cloud Computing Technology and Science (CloudCom), pp.163-171, Nov.

29-Dec. 1 2011.

[7] Oddi, G.; Panfili, M.; Pietrabissa, A; Zuccaro, L.; Suraci, V., "A Resource Allocation

Algorithm of Multi-cloud Resources Based on Markov Decision Process," 2013 IEEE 5th

International Conference on Cloud Computing Technology and Science (CloudCom), pp.

130-135, 2-5 Dec. 2013.

[8] Simon S. Woo, Jelena Mirkovic, Optimal application allocation on multiple public

clouds, Computer Networks, Volume 68, 5 August 2014, pp. 138-148, ISSN 1389-1286,

http://dx.doi.org/10.1016/j.comnet.2013.12.001.

http://dx.doi.org/10.1109/UCC.2011.43
http://dx.doi.org/10.1016/j.comnet.2013.12.001

 71 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

[9] D. Ardagna, G. Gibilisco,M. Ciavotta, A.Lavrentev “A Multi-Model optimization

Framework for the Model Driven Design of Cloud Applications”, To appear, SSBSE 2014.

[10] D.Perez-Palacin, R. Mirandola, R. Calinescu “Synthesis of Adaptation Plans for

Cloud Infrastructure with Hybrid Cost Models” to appear Euromicro SEAA 2014.

[11] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:

comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM

conference on Internet measurement (IMC '10). ACM, New York, NY, USA, 1-14.

DOI=10.1145/1879141.1879143

[12] Tighe, Michael; Bauer, Michael, "Integrating cloud application autoscaling with

dynamic VM allocation," Network Operations and Management Symposium (NOMS),

2014 IEEE, pp. 1-9, 5-9 May 2014, doi: 10.1109/NOMS.2014.6838239

[13] Moreno Marzolla, Raffaela Mirandola: A Framework for QoS-aware Execution of

Workflows over the Cloud. CLOSER 2012: 216-221

[14] Vasilios Andrikopoulos, Santiago Gomez Saez, Frank Leymann, Johannes

Wettinger: Optimal Distribution of Applications in the Cloud. CAiSE 2014: 75-90

[15] https://brooklyn.incubator.apache.org/

[16] The ModaCloud Project. Public deliverable D4.2.1

http://www.modaclouds.eu/wp-

content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVe

rsion.pdf

[17] http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

[18] https://wiki.openstack.org/wiki/Heat

[19] OASIS: TOSCA 1.0 (Topology and Orchestration Specification for Cloud

Applications),

Version 1.0 (2013), http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

[20] Antonio Brogi, Jacopo Soldani, PengWei Wang: TOSCA in a Nutshell: Promises and

Perspectives. In Proceedings of the 3nd European Conference on Service-Oriented and

Cloud Computing (ESOCC 2014), pp. 171-186, Manchester, UK, September 2-4, 2014.

https://brooklyn.incubator.apache.org/
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D4.2.1_MODACloudMLDevelopmentInitialVersion.pdf
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://wiki.openstack.org/wiki/Heat
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

 72 D3.1 Discovery, Design and Orchestration Functionalities: First Specification

[21] Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery - a modeling tool for

tosca-based cloud applications. In: Service-Oriented Computing. Springer (2013), pp.

700-704.

[22] OASIS: TOSCA Simple Profile 1.0

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-

Simple-Profile-YAML-v1.0-csd01.html#_Toc385247586

[23] https://www.ogf.org/documents/GFD.107.pdf

[24] http://en.wikipedia.org/wiki/Service_level_objective

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html#_Toc385247586
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd01/TOSCA-Simple-Profile-YAML-v1.0-csd01.html#_Toc385247586
https://www.ogf.org/documents/GFD.107.pdf
http://en.wikipedia.org/wiki/Service_level_objective

