

SeaClouds Project

D2.4 Final SeaClouds Architecture

Project Acronym SeaClouds
Project Title Seamless adaptive multi-cloud management of service-based

applications
Call identifier FP7-ICT-2012-10
Grant agreement no. Collaborative Project
Start Date 1st October 2013
Ending Date 31st March 2016

Work Package WP2. Requirements Analysis, overall Architecture and

Standardization
Deliverable code D2.4
Deliverable Title Final SeaClouds Architecture
Nature Report
Dissemination Level Public
Due Date: M16
Submission Date: 16th February 2015
Version: 1.0
Status Final
Author(s): Dionysis Athanasopoulos (POLIMI), Miguel Barrientos (UMA),

Jose Carrasco (UMA), Javier Cubo (UMA), Francesco D’Andria
(ATOs), Elisabetta Di Nitto (POLIMI), Adrián Nieto (UMA), Román
Sosa (ATOS), Christian Tismer (NURO), PengWei Wang (UPI)

Reviewer(s) Dionysis Athanasopoulos (POLIMI), Elisabetta Di Nitto (POLIMI),
Andrea Turli (Cloudsoft)

 D2.4 Final SeaClouds Architecture 2

Dissemination Level

Project co-funded by the European Commission within the Seventh Framework Programme

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO Confidential, only for members of the consortium (including the Commission)

Version History

Version Date Comments, Changes, Status
Authors, contributors,

reviewers

0.1 19/01/15 ToC and deadlines defined Javier Cubo

0.2 26/01/15 First version all sections Javier Cubo

0.3 30/01/15 First contributions Javier Cubo, Francesco
D’Andria, Adrián Nieto,
PengWei Wang, Román
Sosa, Christian Tismer,
Elisabetta Di Nitto

0.4 11/02/15 Revision of first contributions and
second draft

Javier Cubo, Francesco
D’Andria, Román Sosa,
PengWei Wang, Christian
Tismer, Elisabetta Di Nitto,
Dionysis Athanasopoulos,
Miguel Barrientos, Jose
Carrasco, Adrián Nieto

0.5 13/02/15 Review of a more stable version Dionysis Athanasopoulos,
Elisabetta Di Nitto, Andrea
Turli

1.0 13/02/15 Stable version after the reviews Javier Cubo, Adrián Nieto

 D2.4 Final SeaClouds Architecture 3

Table of Contents

Executive summary ... 6

1. Introduction .. 7

1.1 Scope and objectives .. 7

1.2 Overview of the document ... 8

1.3 Glossary of Acronyms ... 8

2. Final SeaClouds Architecture .. 9

2.1. The SeaClouds Approach ... 9

2.2. The SeaClouds Functionalities ... 10

2.3. The SeaClouds Architecture .. 14

2.4. The SeaClouds StoryBoard .. 18

3. SeaClouds Components .. 21

3.1. Discoverer Component .. 21

3.2. Planner Component ... 22

3.3. Deployer Component .. 26

3.4. Monitor Component .. 30

3.5. SLA Service ... 35

3.6 GUI and Dashboard .. 40

4. Mapping the SeaClouds functionalities to the Case Studies 43

5. Conclusions ... 45

References .. 46

 D2.4 Final SeaClouds Architecture 4

List of Figures

Figure 1. “Agility After Deployment” strategy in SeaClouds. ... 7

Figure 2. Cloud architecture before and after SeaClouds. ... 9

Figure 3. Initial Architecture of the SeaClouds Platform. ... 15

Figure 4. Application Model Lifecycle. ... 16

Figure 5. Interaction flow between the SeaClouds components. 17

Figure 6. An example from Amazon Web Services .. 22

Figure 7. Architecture of the Discoverer and Planner components 24

Figure 8. Discoverer and Planner strategy: interaction between components 26

Figure 9. Architecture of the Deployer component ... 28

Figure 10. Deployment strategy: interaction between components 30

Figure 11. Architecture of the Monitor component .. 32

Figure 12. Monitoring rules pseudocode ... 33

Figure 13 XML code of a simple monitoring rule. .. 33

Figure 14. Monitoring strategy: interaction between components 35

Figure 15. Architecture of the SLA Service ... 37

Figure 16. SLA Service strategy: interaction between components 40

 D2.4 Final SeaClouds Architecture 5

List of Tables

Table 1. Acronyms. ... 8

Table 2. Discoverer component description .. 22

Table 3. Planner component description ... 24

Table 4. Deployer component description ... 27

Table 5. Monitor component description .. 31

Table 6. SLA Service description ... 37

Table 7. GUI description ... 41

Table 8. Dashboard description .. 42

Table 9. SeaClouds functionalities matching with the Case Studies 44

 D2.4 Final SeaClouds Architecture 6

Executive summary

This deliverable presents the final and stable architecture of the SeaClouds platform.
SeaClouds provides the foundation for allowing “Agility After Deployment” providing
necessary tools and a framework for Modelling, Planning and Controlling Cloud
Applications. In this document, the SeaClouds components are described both at
design time and at run-time. Also, a mapping between the SeaClouds Open Reference
Architecture and the case studies is considered in this deliverable.

 D2.4 Final SeaClouds Architecture 7

1. Introduction

The final architecture of the SeaClouds platform is presented in this document,
following the initial architecture presented in Deliverable D2.2 [1]. Prior to describing
the final SeaClouds architecture, we briefly provide the scope of SeaClouds and the
objectives met by its architecture.

1.1 Scope and objectives

How to design, deploy and manage, in an efficient and adaptive way, complex
applications across multiple heterogeneous cloud platforms is one of the problems
that have emerged with the cloud revolution. In this document, we present the Final
SeaClouds Architecture.

Considering an agile execution approach both at
design and runtime, SeaClouds works towards giving
organizations the capability of “Agility After
Deployment” for cloud-based applications (see Figure
1), following an agile execution approach. The
approach is based on the concept of service
orchestration and designed to fulfill functional and
non-functional properties over the whole application.
Applications will be dynamically reconfigured by
changing the orchestration of the services they use
when the monitoring will detect that such properties
are not respected. So, SeaClouds' main goal is the
development of a novel platform which performs a
seamless adaptive multi-cloud management of
service-based applications, with four specific
objectives. For each objective, the SeaClouds
consortium plans to tackle a set of challenges, which
are described in depth in Deliverable D2.2, related to
Initial architecture and design of the SeaClouds
platform [1].

Figure 1. “Agility After
Deployment” strategy in

SeaClouds.

Objectives of SeaClouds:

 Orchestration and adaptation of services distributed over different cloud
providers.

 Offer unified application management of services distributed over different
cloud providers.

 Monitoring and run-time reconfiguration operations of services distributed over
multiple heterogeneous cloud providers.

 Compliance with major standards for cloud interoperability.

 D2.4 Final SeaClouds Architecture 8

1.2 Overview of the document

The structure of the rest of this document is the following. Section 2 presents the
approach and functionalities of SeaClouds. It introduces the final architecture of the
platform and illustrates the SeaClouds approach using a storyboard based on the
NURO Cloud Gaming, one of the SeaClouds case studies. Section 3 describes the main
components: Discoverer, Planner, Deployer, Monitor, SLA, and GUI and Dashboard.
Section 4 maps the SeaClouds architecture components to the case studies. Section 5
closes the deliverable.

1.3 Glossary of Acronyms

Acronym Definition

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

QoS Quality of Service

QoB Quality of Business

SLA Service Level Agreement

OASIS Organization for the Advancement of Structured Information Standards

TOSCA Topology and Orchestration Specification for Cloud Applications

CAMP Cloud Application Management for Platforms

GUI Graphical User Interface

API Application Programming Interface

APP Application

DB Database

AAM Abstract Application Model

DAM Deployable Application Model

DevOps Development and Operations

DC Data Collectors

DDA Deterministic Data Analyzer

KB Knowledge Base

ObjS Object Store

AMSoC Application Management System over Cloud

QoE Quality of Experience

C-AP Customer - Application Provider

Table 1. Acronyms.

 D2.4 Final SeaClouds Architecture 9

2. Final SeaClouds Architecture

This section presents the SeaClouds approach, functionalities and architecture,
illustrating the approach using a storyboard.

2.1. The SeaClouds Approach

The SeaClouds project aims to develop a new open source framework which performs
Seamless Adaptive Multi-Cloud management of service-based applications. The
framework consists of an Application Management System over Cloud (AMSoC) at
different levels, IaaS and PaaS that implements a DevOps approach for continuous
software delivery. This approach enables application providers to mitigate business
risks and reduce time to market and customer feedback.

SeaClouds allows developers to design, deploy, manage and configure complex
applications across multiple and heterogeneous clouds, something unfeasible
hitherto.

Figure 2 shows the cloud architecture situation before (top) and after SeaClouds
(bottom). Without SeaClouds, services can only be deployed, managed and monitored
across multiple clouds as standalone applications, and not as part of composite
applications. This has the consequence that there is no support for synchronized
deployment and unified monitoring, which implies that the QoS of the entire
application is difficult to monitor. There is no support for migrating one service and
reconfiguring the rest of the application to use the migrated service, in case a provider
does not respect its SLA.

Figure 2. Cloud architecture before and after SeaClouds.

 D2.4 Final SeaClouds Architecture 10

SeaClouds aims at homogenizing the management over different providers and at
supporting the sound and scalable orchestration of services across them. Moreover,
systems developed based on the SeaClouds approach will inherently support the
evolution of their constituent services, so as to easily cope up with needed changes,
even at runtime. The development, monitoring and reconfiguration via SeaClouds
include a unified management service, where services can be deployed, replicated, and
administered by means of standard harmonized APIs, such as the ones provided by the
Cloud4SOA project and the one that can be produced based on the CAMP
specification.

In the following, we list some of the current problems and barriers, related to the
cloud that will be solved by the main results expected from SeaClouds.

1. Support for application deployment and migration to different providers.
SeaClouds will provide support for deploying and migrating applications
composed of several services taking care of the synchronization of the
services and their reconfiguration, without requiring the user to manually
intervene.

2. Management and monitoring of underlying providers. Properties over
application and services deployed on multiple clouds can be ensured and
managed in a standardized way by using unified metrics and automated
auditing.

3. Increased availability and higher security. The usage of formal models to
support the management of service-based applications over multi-clouds
environments gives more flexibility to reconfigure the distribution when a
SLA violation occurs.

4. Performance and cost optimization. The framework gives users freedom to
distribute application requirements over different cloud offerings by using
needed options in a flexible manner. Organizations can take advantage of
useful and powerful services provided by each platform and avoiding its
weaknesses. Optimization requirements can also be modelled to consider
cost as the main decision parameter.

5. Low impact on the code and user-friendly interface. SeaClouds will tackle
different problems for developers and administrators of cloud applications
thanks to the proposed orchestration model as follows. First, the
development process is simplified by using the SeaClouds tools and
framework that require minor code changes. Second the management of
already deployed complex cloud applications is simplified thanks to the
SeaClouds dashboard.

2.2. The SeaClouds Functionalities

When we talk about SeaClouds, the basic question we should answer is: What is
SeaClouds?

 D2.4 Final SeaClouds Architecture 11

 SeaClouds is a software platform which makes more efficient the “design,
development, planning and management” of complex business applications
distributed on multi-cloud environments.

 SeaClouds provides an enterprise capability with continuous software delivery
that enables independent application vendors to mitigate risks and reduce time
and cost to market and customer feedback.

 SeaClouds orchestrates services, platforms and infrastructures to ensure they
directly and dynamically, meet the needs of cloud applications.

 SeaClouds provides an integrated and based on standards multi-cloud
application management system that follow the DevOps approach with seven
basic capabilities delivered to the developer via an innovative Graphical User
Interface (GUI).

The seven basic functionalities/capabilities of SeaClouds are the following:

Matchmaking allows querying or
browsing available cloud offerings
(PaaS and IaaS) via the SeaClouds
GUI for determining suitable ones
based on application
requirements. The latter includes
information about the technology
of each application module and
a suite of non-functional
requirements such as: Location,
Quality of Service, SLA, Cost, etc.

Cloud Service Optimizer: It optimizes
the deployment topology of an
application across multiple clouds to
address non-functional requirements
by following strategies like the
maximization of the Cost or the
Quality of Service and possibly
following location policies like
“following the sun”.

 D2.4 Final SeaClouds Architecture 12

Application Management
(Application Deployment and
Governance). It supports efficient
deployment and multi-cloud
governance of a complex
application on various cloud
offerings (IaaS and PaaS)
leveraging cloud harmonized APIs
and platform-specific adapters.

Monitoring and SLA
enforcement. It provides
an independent Cloud
monitoring functionality
based on unified “cloud
offering” independent
metrics, such as
latency/Response time,
application status, etc., to
allow operators to
proactively monitor the
health and the
performance of business-
critical applications,
hosted across multiple
Clouds.

Repairing (cloud
resource scaling). It
scales horizontally and
vertically cloud
resources to maximize
the performance of
each module of an
application; it restarts
and replaces failed
components.

 D2.4 Final SeaClouds Architecture 13

Replanning and
Application migration: The
SeaClouds software
platform aims to support a
seamless migration of the
software modules of an
application between
dissimilar (but compatible)
clouds, dealing with the
semantic interoperability
conflicts to allow the full
portability of an
application.

Database migration and data
synchronization: It enables the
portability of data between
Databases (on different
Clouds) in an automatic way to
minimize the amount of effort
and time for application
developers operational teams
to set up and process critical
data updates between
different and in some cases
dissimilar databases. It ensures
that data are not lost nor
damaged in the process and
that the application exploiting
the data is not negatively
affected by this movement.

The aforementioned functionalities are provided by the following software
components, introduced in the next subsection, in which the SeaClouds platform is
presented. The details about the architecture of the SeaClouds platform are given in
Section 3.

 The Matchmaking functionality is implemented by the Planner component.

 The Cloud Service Optimizer functionality is implemented by the Planner
component as well.

 The Application Management functionality is implemented by the Deployer
component.

 D2.4 Final SeaClouds Architecture 14

 The Monitoring and SLA enforcement functionality is implemented jointly by
the Deployer, Monitoring and SLA Service components.

 The Repairing functionality is implemented jointly by the Deployer and
Monitoring and components.

 The Replanning and Application migration functionality is implemented jointly
by the Deployer and Monitoring and Planner components.

 The Database migration and data synchronization functionality is inherited
from MODAClouds and is integrated with the other elements of SeaClouds so
that they can activate it.

2.3. The SeaClouds Architecture

This section presents the reference architecture and the design of the SeaClouds
platform, and discusses its novel aspects compared to other existing initiatives and
efforts. Figure 3 depicts the reference architecture of the SeaClouds platform.

Before describing the core components of the architecture of the SeaClouds platform,
it is worth observing that the platform features a Graphical User Interface (GUI) for
two user roles (Designers and Deployment Managers), and that Cloud Provider
Systems are considered. The main stakeholders for the SeaClouds platform are the
following:

 Application Designer (or Developer) exploits the GUI to provide a description
of the topology of the application to be deployed together with a set of
requirements. These requirements can include QoS properties and technology
requirements for the application modules, and the maximum acceptable cost
for the entire deployment.

 Deployment Manager (or Application Manager) exploits the GUI through the
Unified Dashboard that allows them to supervise the deployment and the
monitoring of the application.

 Cloud Providers offer Cloud Resources (which further offer some Cloud
Capabilities). They do not necessarily interact directly with the SeaClouds
platform, but the services offered are exploited by the platform to run service
compositions.

 D2.4 Final SeaClouds Architecture 15

Cloud Systems

under

Management

Engine

(Planner /

Controller)

Cloud

 Provider Pm-n

Cloud

Provider Pm-n+1

Cloud

Provider Pm

TOSCA-compliant

CAMP-compliant

Seaclouds API

GUI /

Unified Dashboard
Deployment Manager

view

Designer

view

D
e

p
lo

y
e

r

A
P

I
D

is
c

o
v

e
re

r

A
P

I

SLAs

Deployable

App Model

MonitorPlanner

Cloud

capabilites

& SLAs

Capabilities

seeking

Capabilities

response

Deployer

Discoverer

M
o

n
ito

r

A
P

I

Status

request

Status

info

Deployment

Plan Cloud

Provider Pn

Cloud

Provider Pn-1

Non-TOSCA/

CAMP-compliant

Cloud

Provider P1

SLA Service

Planner

API

SLA Service

API

Abstract App

Model

Requirements

App Topology
Monitoring

setup

Business SLA info
Confirmed Deloyable

App Model

Monitoring

info & triggers

Replanning

trigger

Agreement

generation

Live

Model

Repairing

actions

Figure 3. Initial Architecture of the SeaClouds Platform.

From SeaClouds platform functionalities standpoint, we can identify five major
components in the architecture, plus a RESTful harmonized and unified SeaClouds API
layer used for the deployment, management and monitoring of simple cloud-based
applications through different and heterogeneous cloud providers.

 SeaClouds Discoverer: it’s in charge of discovering available capabilities and
add-ons offered by available cloud providers using the Discoverer API.

 SeaClouds Planner: it’s in charge of generating the DAM, using the Planner API.

 SeaClouds Deployer: it’s in charge of executing the DAM, using the Deployer
API.

 SeaClouds Monitor: it’s in charge of monitoring) that the QoS properties of the
application modules and the whole application are not violated by the clouds in
which they were deployed, using the Monitor API. It is also in charge of
generating the reconfiguration suggestions (if needed) to be passed as inputs
to the Planner component to trigger the generation of a new adaptive
orchestration plan.

 SeaClouds SLA Service: it’s in charge of mapping the low level information
gathered from the Monitor into business level information about the fulfilment
of the SLA defined for a SeaClouds application, using the SLA Service API.

SeaClouds follows the Application Model Lifecycle depicted in Figure 4.

 D2.4 Final SeaClouds Architecture 16

Figure 4. Application Model Lifecycle.

Figure 5 represents the necessary steps to carry out an application deployment from
the initial stage where the Application Developer (end-user) provides the Application
Model consisting of the Module Profile and the Topology representing the connections
among the modules of the cloud application to be deployed (other elements as the SLA
restrictions and policies are considered by SeaClouds), as described in detail in
Deliverable D3.1 [2], related to the design-time, to the deployment, monitoring and
reconfiguration of the application, related to the run-time. A brief explanation of this
process is given in the following.

After the Abstract Application Model (AAM) has been specified (step 1 in Figure 5),
SeaClouds kicks off the Discovering and Planning stage. Once the cloud providers have
been discovered (step 2), the Planner acts with two subprocesses: Matchmaking and
Optimizer (described in D3.1 [2]).

The Planner generates a Deployable Application Model (DAM), which specifies the
concrete cloud services used to distribute the application (step 3). The Deployer
component, detailed in Deliverable D4.1 [3], executes the confirmed DAM (step 4),
while the monitoring is configured with the corresponding monitoring rules taken
from the user requirements (step 5) and the agreements are initialized with the user
inputs (step 6). Also, the SLA service is subscribed to rules or alerts in connection with
the Monitor, enforcing the policies of the agreements (step 7). The Deployer allows the
deployment of the application’s modules over heterogeneous IaaS and PaaS (step 8),
and a Live Application Model, which tracks the dynamic evolution of the deployment
and management of the application modules themselves.

 D2.4 Final SeaClouds Architecture 17

Figure 5. Interaction flow between the SeaClouds components.

Once the application is deployed, the Deployer manages it and instruments the
Monitor. In particular, the Deployer installs DataCollectors in the cloud machine(s), in
which the application modules have been deployed. A DataCollector component
gathers raw monitoring data and pushes them to the Monitor (step 9). The latter
component interacts with the SLA service to manage violations of properties, QoS and
QoB. A Live Application Model maintains a track of the dynamic evolution of the
deployment and management of the application modules. Whether a violation issue
occurs, and it can be fixed without replanning, then the Monitor and the Deployer
interact to repair the issue (step 10). Otherwise, then the Monitor interacts with the
Planner (steps 11, 12). In this case, the Planner generates a new plan, which will be
executed by the Deployer. Business SLA info is exposed by means of the Dashboard
(step 13).

A distinguishing aspect of the SeaClouds architecture is that it builds on top of two
OASIS standards initiatives: TOSCA (Orchestration Specification for Cloud Applications)
[4] and CAMP (Cloud Application Management for Platforms) [5]. On one hand,
adopting TOSCA to represent application topologies can be automatically processed by
any TOSCA-compliant platform. On the other hand, adopting CAMP, which proposes
standardized artifacts and APIs that need to be offered by PaaS clouds to manage the
building, running, administration, monitoring and patching of applications in the cloud.
It is however worth noting that the Deployer does not require cloud providers to be
TOSCA or CAMP compliant, and it actually could generate deployment plans for non-
TOSCA/CAMP compliant providers as needed.

Section 3 describes more in detail the components and services, their functionalities,
interactions, and the inputs/outputs of the SeaClouds platform, but before we

 D2.4 Final SeaClouds Architecture 18

illustrate the SeaClouds proposal with a storyboard using the NURO Cloud Gaming case
study.

2.4. The SeaClouds StoryBoard

Let’s imagine Christian is a video game developer and he wants to use the SeaClouds
platform to be able to configure, deploy and manage his video games on multiple and
heterogeneous clouds.

Christian is dealing with applications constituted of a multiple modules: a client,
typically installed on the customer’s device, and a server (software layer plus
database). Christian needs to find a good balance between availability, response time
and cost of the server part. Moreover, he needs to guarantee that the server is able to
handle a workload with significant variations over time, both in terms of number of
requests per second (the number of players can grow/decrease depending on the
marketing campaigns the company organizes, the exhibitions in which the video game
is shown, the time of the day,…) and in terms of geographic provenance (video games
played in US and India will experience a workload mainly originated by USA in the
timeframe 18.00-22.00 EST and mainly originated by India in the timeframe 8.30-12.30
EST, corresponding to 18.00-22.00 IST). The cost of hot instances on clouds may vary
with the time of the day, Christian realizes that it is convenient for his company to
exploit the cloud that offers the best price (and other features) at each time. Overall,
Christian’s requirements are met if careful configuration, deployment, and
management of the system are performed. This is the reason for which Christian
decides to use SeaClouds.

Christian has already developed the client and server for his application. Moreover, he
has set up a MySQL database for storing the application data. The application (written
in PHP) interacts with the database connecting to MySQL compatible databases.

From the SeaClouds Dashboard and using the GUI, Christian starts defining the
Abstract Application Model (AAM). The Dashboard assists him in:

 Identifying the Base Modules Game Application and Analytics Application that
are PHP components;

 Identifying the containers to be used to run them, the PHP workers offered as
services by PaaS or IaaS providers;

 Mapping the application databases, Game DB and Log DB to the same MySQL
service;

 Defining as first Quality of Service requirement Fast Response, and associate to
it two Management Policies called BOOM and Burst, respectively, that will be
activated as soon as the monitoring system realizes that the Fast Response
requirement is violated;

Christian will use the same Dashboard to follow the application lifecycle.

 D2.4 Final SeaClouds Architecture 19

At this point, SeaClouds, through its Discoverer, checks a list of different cloud
providers. For each provider, SeaClouds Discoverer:

 gathers technical properties of its cloud - in order to satisfy Christian’s
application technical requirements;

 checks their exposed availability and other issues (like public prices);

 tests the performance of different alternatives offered by the provider
(SeaClouds gets help from CloudHarmony1 for this task);

Using the Abstract Application Model that Christian created and the gathered
information from cloud providers, SeaClouds invokes the execution of its Planner. The
Planner will transform the AAM into a Deployable Application Model (DAM). For
doing this, it passes through two stages.

In the first stage, some existing cloud offers are discarded for the execution of modules
in the Abstract Application Model. The decision to discard some cloud offers is
performed by a Matchmaker and is based on the matching between
technology/technical properties they offered and technology/technical requirements
expressed in the Abstract Application Model. Therefore, in this stage, for each
application module in the Abstract Application Model there are only kept the cloud
offers that are technically able to execute it.

In the second stage of the planning activity, it is performed an optimization process in
which, for each module in the AAM, it is selected a cloud offer among the ones that
can technically execute it. This optimization process is guided by the quality
requirements stated in the AAM (i.e., the required availability, performance and cost
of Christian’s application). Once a cloud offer is selected for each module, they are
saved as Concrete Service object in the AAM.

Using performance evaluation techniques, the optimizer now deals with the
generation of information useful for the runtime scalability/elasticity decisions. It does
so by computing the threshold values for system characteristics (e.g., monitored
system response time) above/below which application modules should scale up/down.
It also provides the maximum limit of replicas of each module that the application can
afford without budget overrun (i.e. not exceeding the application cost requirement). At
this point the Planner work is finished. The result of this step, is a specification of the
Christian’s application compatible with major standards on cloud interoperability,
which the advantages of being able to deploy the application in multiple clouds.

This optimized Abstract Application Model together with the information regarding
when to scale up/down and the scaling limit conforms the DAM.

As soon as the DAM is ready, Christian selects the deploy option and waits until the
application is deployed and ready to operate, which is done by the SeaClouds

1
 https://cloudharmony.com/

https://cloudharmony.com/

 D2.4 Final SeaClouds Architecture 20

Deployer. Then it starts the application execution and makes it available to his
customers.

By means of the Monitor, the SeaClouds monitoring system continuously oversees the
execution of the system and at a certain point realizes that the Fast Response
requirement is violated.

Christian is satisfied of the way the system works, but he knows that in the current
stage still it does not fulfill his actual requirement of being able to achieve a good
balance between availability, response time and cost.

Christian then opens back the Application Model editor and introduces the new
requirement about the balance plus the information about the system workload that
he has collected during the initial operation of the system. The SeaClouds Planner
analyses the new requirement and comes us with a variation of the DAM containing
the following reconfiguration action:

if (timeOfTheDay >= 9.00 EST AND timeOfTheDay <= 13.00 EST)
 migrate system to IndianCloud

He then asks SeaClouds to put the system back in operation. In terms of SLA Service,
from the point of view of the application, Christian wants to offer some guarantee to
his users that the platform is responsive enough to offer a nice playing experience. So
he adds a business SLA constraint to the agreement that represents the service offered
by Christian to the players: if the runtime of the platform is greater than 2 seconds, he
offers discounts for in-app purchases to the users that are playing at that time.

The cloud providers where each module is deployed offer their own fixed SLA. But
Christian wants to consult the SLA of the current providers in a centralized way and in
a uniform format. So, he accesses the dashboard where he can consult in a YAML
format the SLA of the providers. Moreover, he wants to be notified when SeaClouds
evaluates that the provider SLA has not being fulfilled. For example, HP Cloud
guarantees a monthly uptime of 99.95%, with variable discounts depending of the
actual uptime. Christian wants to check if the discounts are applied at the end of the
month by the provider.

Christian also could indicate some actions previously defined to repair situations that
could be solved by using techniques to repair without need of replanning (create a
new plan), and also he could request these actions at run-time, by means of the
dashboard.

 D2.4 Final SeaClouds Architecture 21

3. SeaClouds Components

In this section, the components from the final architecture of SeaClouds are detailed. It
is worth mentioning each component offers its functionalities through a REST interface
and the interactions between modules must be performed using these REST interfaces.
A first design of the API of the modules was provided in Deliverable D4.2 [6], and the
next and final version will be explained deeply in Deliverable 4.5 [7].

3.1. Discoverer Component

 The main functionality of the Discoverer component is described in Table 2.

Component Discoverer

Description/

Functionality

The Discoverer component is in charge of discovering

available capabilities offered by cloud providers. The

description of such capabilities includes technology aspects

(e.g., programming languages, development frameworks,

runtime environments, add-ons), QoS properties (e.g.,

availability, reliability), along with the associated SLAs

(including the cost associated to each provided service).

The Discoverer will utilize some existing directories (e.g.,

CloudHarmony) to collect cloud providers and services,

transform them into the forms based on the related model

defined in SeaClouds, and then build the repository, which

is accessible to the Planner component as well as the

Dashboard.

Inputs A list of cloud providers and a set of desired SLAs.

Outputs A repository of available cloud provider capabilities

(specified in TOSCA YAML) and cloud providers SLAs to be

sent to the Planner and the Dashboard.

Interactions and

Interfaces

This component interacts with the Planner and the

Dashboard. The Planner will access the repository

generated by the Discoverer to perform a matchmaking

and optimization process so as to decide where to deploy

each application module according to its QoS and

technology requirements. The GUI/Dashboard will present

the result of the discoverer to the end-user. Optionally, this

 D2.4 Final SeaClouds Architecture 22

component could also receive automatic updates from

cloud providers.

Table 2. Discoverer component description

 The Discoverer (see the architecture and interaction with other components in Section

3.2, Figures 7 and 8, where is represented together with the Planner) is responsible for

collecting the capabilities and services advertised by different cloud providers (both at

IaaS and PaaS levels), generating the SeaClouds repository of cloud providers and

services, and also maintaining and updating this repository continuously, hence to

support the Matchmaking step in the Planner component to determine suitable cloud

services from this repository for each module. In addition, we have proposed a general

cloud profile model [2] to represent the services offered by different cloud providers

so as to provide a uniform description of them, and mapped this model into TOSCA

representations. Therefore, in the SeaClouds repository generated by the Discoverer,

all the cloud services are written in TOSCA YAML format, which greatly facilitate our

use in SeaClouds platform, e.g., a TOSCA-based matchmaking in the Planner

component. Based on our cloud profile model and TOSCA YAML format, a simplified

example for AWS.compute.c1.medium from Amazon Web Services in our repository is

shown in Figure 6.

Figure 6. An example from Amazon Web Services

3.2. Planner Component

The Planner description and architecture is presented in Table 3. Planner component
description

 D2.4 Final SeaClouds Architecture 23

 and Figure 7, respectively.

 Component Planner

Description/

Functionality

The Planner component receives from the application

designer an Abstract Application Model (AAM) - a description

of the application topology together with a set of

requirements, including QoS properties and technology

requirements - and it determines (by consulting the

repository of cloud offerings) how the application modules

can be distributed over the available clouds without violating

the given set of requirements. The Planner is first triggered

by the inputs from the application designer and then by

replanning triggers generated by the Monitor component

(possibly filtered by the Deployment Manager). The Planner

will generate a Deployable Application Model (DAM) that

specifies the concrete cloud services where to distribute the

application modules. This is implemented in three steps

(Matchmaking, Optimization, and DAM generator), and the

outputted DAM will include the concrete services associated

with each Base module and the policies to manage the

scaling mechanism of each module.

Inputs Abstract Application Model (AAM), repository of cloud

offerings and related SLAs, replanning trigger, and Live

Model.

Outputs Deployable Application Model (DAM) and related Monitoring

Configuration (Monitoring rules, SLAs…).

 D2.4 Final SeaClouds Architecture 24

Interactions

and Interfaces

The Planner receives the AAM including requirements and

application topology from the Application Designer, by

means of the GUI/Dashboard. It interacts with the Discoverer

component to acquire the available capabilities and SLAs. It

interacts with the SLA Service to generate the SLA

agreements that will evaluate at runtime the Quality of

Business of the application. It generates the DAM (returned

to the Deployment Manager), so it connects also with the

Deployer. It setups the Monitor from where it receives

replanning triggers from the Monitor component, and also

from the Deployment Manager (connected through the

GUI/Dashboard). When a replanning is needed, it will ask the

Deployer for the Live Model so as to collect enough

information to do the replanning.

Table 3. Planner component description

Figure 7. Architecture of the Discoverer and Planner components

As depicted in Figure 7, the Discoverer is a single component connected to the Cloud
Providers and manages the Cloud Offerings Repository, while the Planner consists of
three sub-components:

 Matchmaking: this first step aims to identify, for each module, a set of cloud
services that satisfy the technology requirements specified by the user. In this

 D2.4 Final SeaClouds Architecture 25

step, the matchmaking does not take into account quality requirements and
possible relationships among modules.

 Optimization: once a set of suitable cloud services have been identified for
each module, an optimization process can be performed. This activity decides,
among all the options that satisfy the technology requirements provided by the
matchmaking activity, a suitable combination of cloud services that allows the
application to satisfy its quality requirements and the relationships among
modules, at the same time that considers the utilization of cloud elasticity.

 DAM generator: following the matchmaking and optimization, this step will
finalize the DAM through adding the policies like “Following-the-sun”, so as to
include enough information for the Deployer.

The Planner is responsible for transforming this AAM into a DAM (Deployable
Application Model) so that the Deployer can deploy the application actually. This
transformation will be completed by three steps in the Planner.

First, for each module of the application, the Matchmaker will check the repository
and do a matchmaking according to the technology requirements expressed by the
user in the AAM, and discard the cloud offerings that cannot satisfy the technology
requirements. Therefore, after this step, for each application module in the AAM, only
the cloud offerings that are technically able to execute it are selected.

Second, based on the results from the Matchmaking step, the Optimization step will
try to find a suitable combination of cloud offerings that satisfy the quality
requirements of the application and/or its modules. This process is guided by the
quality requirements specified by the user in the application (i.e., the required
availability, performance and cost), and also considers the utilization of cloud
elasticity. By using performance evaluation techniques, the optimizer deals with the
generation of information that is useful for the runtime scalability/elasticity decisions.
It does so by computing the threshold values for system characteristics (e.g.,
monitored system response time) above/below which application modules should
scale up/down. It also provides the maximum limit of replicas of each module that the
application can afford without budget overrun (i.e., not exceeding the application cost
requirement).

Third, based on the Application Model generated by modifying the original AAM by
Matchmaking and Optimization, the DAM generator will add the needed policies like
“Follow-the-sun” or “autoscaling” into the model so as to generate the final DAM.

Figure 8 depicts the interaction of the Discoverer and Planner components with the
rest of components of the SeaClouds Platform.

 D2.4 Final SeaClouds Architecture 26

Figure 8. Discoverer and Planner strategy: interaction between components

3.3. Deployer Component

Table 4 describes the main functionality of the Deployer component, whose
architecture is presented in Figure 9.

Component Deployer

Description/

Functionality

The main goal of the Deployer component is to deploy the

application in a multi-cloud environment. To do this, it

reads a Deployable Application Model (DAM) which

contains the necessary information to deploy an application

over a set of cloud providers (locations). More specifically,

the DAM describes the application topology detailing the

application components, the relationships, the

dependencies, features, constraints, the target providers,

etc. Therefore, the DAM includes an embedded deployment

plan for carrying out the deployment based on the modules

dependencies and relations.

The Deployer processes the DAM and uses the necessary

operations that allow to manage the target locations and

the cloud resources in a homogeneous way. Then, the

 D2.4 Final SeaClouds Architecture 27

application components are distributed and the relation are

established, archiving the desired application behavior.

The Deployer provides the necessary operations or

methods, through the REST API, allowing the post-

deployment management like changing the application

status (e.g., stop, pause and restart) or performing entity-

specific actions (e.g., scale up/down).

Moreover, the Deployer maintains the model of the current

application deployment status called Live Application

Model (LAM).

Inputs Deployable Application Model (DAM)

Outputs It could be considered as the output of the Deployer the

deployment itself, and internally is maintained the Live

Application Model (LAM)

Interactions and

Interfaces

The Deployer receives the DAM from the Planner, and by

means of the GUI/Dashboard confirms the DAM. It interacts

with the target platforms, cloud providers, using the needed

services to deploy the application modules. The Deployer is

directly connected with the Monitor to check when a

repairing action is required and giving information to the

Monitor about the Live Application Model. This component

also provides a REST API, as it was mentioned above, to

ensure the post-deployment management of application

components and cloud resources.

Table 4. Deployer component description

 D2.4 Final SeaClouds Architecture 28

Figure 9. Architecture of the Deployer component

The Deployer is composed of several elements (more details in Deliverable D4.1 [3]).
The main element is the Deployer Engine, which receives a Deployable Application
Model (DAM) through its Deployer API and executes the DAM. As the Deployer Engine
is cloud-agnostic, it is able to deploy applications on different cloud providers using
multiple Cloud Adapters (PaaS and IaaS levels).

Once the application has been deployed, the Deployer Engine maintains the Live
Model, which contains (i) the data structure (components and relationship between
these) in order to maintain the topology of the application, with a profile about the
topology of the real application distribution over the target providers (using the cloud
adaptors), (ii) the relationships and dependencies, (iii) the used services, and the
deployment context (IP of the used machines, used O.S., real listener port, metadata of
the applications components, etc.).

Currently, SeaClouds is using Brooklyn [8] as Deployer Engine to accomplish the multi-
cloud deployment of the application components and the Live Model generation and
management. The application components could be deployed over different cloud
providers simultaneously (using jClouds [9] as Cloud Adapter at IaaS level, and
currently the SeaClouds consortium is developing a set of PaaS connectors to deploy
against PaaS providers. Thus, we define the DAM based on the YAML Blueprint
specification of Brooklyn [10].

The live model is used by the Monitor and Dashboard, to maintain the status of the
application according to the constraints and the features which have been described

 D2.4 Final SeaClouds Architecture 29

by the user. In addition, the live model is checked by the Dashboard in order to
maintain the graphical representation of the application distribution. Therefore, the
Deployer provides a way to manage the application related resources, like the Live
Application Model which contains the services used by an application and their
configuration, the location for each of the application modules, and the relationships
among modules.

The live model consists of many of the same pieces as in the deployable model, with
some important additions, such as sensors values, policies, additional entities (if
creation of some entities results in children), or effectors (operations) available.

All aspects of the live model are exposed through a REST API where entities can be
navigated, and all current information about children, sensor values, and policies can
be accessed. By assigning UUID’s as part of the deployable model, these ID’s can be
tracked in the live model and live information about the components requested to be
deployed can be accessed as needed, by the planner or by an operator.

Once the application have been deployed, its management is accomplished by the
Deployer and the Monitor is checking the status of possible violations, connected to
the SLA Service. Whether a violation occur, then a reconfiguration process is required.
This process is detailed in Deliverable 4.3 [11].

Figure 10 shows the steps performed during the deployment of a cloud application
using the SeaClouds Deployer, considering the interaction with the rest of components
(the full description can be found in [3]).

 D2.4 Final SeaClouds Architecture 30

Figure 10. Deployment strategy: interaction between components

3.4. Monitor Component

In Table 5 and Figure 11 are presented the functionality and the architecture,
respectively, of the Monitor component.

Component Monitor

Description/

Functionality

The Monitor component receives the set of monitoring

rules to be executed for controlling the corresponding

cloud application. These monitoring rules include the

resources to be monitored, the metrics to be collected, the

formulas to be verified and the actions to be executed

when the formulas become true. Such actions can include

performing REST calls to other components, e.g., the

 D2.4 Final SeaClouds Architecture 31

Deployer (Live Model) or the Planner, enabling/disabling

monitoring rules and generating new metrics as output.

Such metrics could be used then to trigger other

monitoring rules or to trigger reconfiguration actions.

The monitoring component offers a REST interface to install

monitoring rules and configure the monitoring

subcomponents, in particular, the data collectors.

Moreover, through the same REST interface, the

monitoring component allows other components to

register themselves as observers to the stream of data

corresponding to some monitoring rule. The Monitoring

component exploits the MODAClouds monitoring platform

as its core element.

Inputs
1. A set of monitoring rules

2. The live model. This should be described according to
the monitoring meta-model and should be kept
updated through the provided API at runtime.

Outputs The monitoring component offers the possibility to connect

external observers to its data streams corresponding to

some monitoring rules. This way, such observers can be

aware of the monitored metrics and trigger repairing or

replanning actions when some of the monitoring rules are

violated.

Interactions and

Interfaces

The monitoring platform offers its services through a REST

interface. Moreover, it assumes that components that want

to be alerted of the occurrence of some issue register

themselves as observers of some monitoring rule.

The interaction with data collectors on one side and

observers on the other occurs by sharing data streams with

them.

Table 5. Monitor component description

 D2.4 Final SeaClouds Architecture 32

Figure 11. Architecture of the Monitor component

Figure 11 shows the architecture of the Monitoring component. The system is based
on the idea of using Data Collectors to acquire monitoring data from various sources.
In the figure we have as an example five different types of Data Collectors in charge of
interacting with different components, either at the infrastructural or at the
application level.

These Data Collectors can be installed anywhere it is suitable for the system under
analysis. New Java Data Collectors can be implemented starting from the Data
Collector Factory library that is available here [12]. Non Java Data Collectors should be
able to use the following MODAClouds platform interfaces:

DDA (Deterministic Data Analyzer) interface as monitoring data must be sent to the
DDA accessing the exposed interface. KB (Knowledge Base) interface as in the KB, data
collectors factories will retrieve the configuration of their data collectors. ObjS (Object
Store) interface as from ObjS they retrieve the URL of the KB

All above interfaces are described in the MODAClouds deliverable D6.3.2 [13] and
available on GitHub at the URLs indicated in the deliverable.

During their execution, Data Collectors send periodically data to the Deterministic Data
Analyzer that filters them based on the definition of the Monitoring Rules it has
installed. Monitoring rules predicate on Resources that are defined in the Monitoring
Ontology stored in the Knowledge Base. Thanks to this, it can aggregate and filter data
at various levels of abstraction. For instance, in Figure 12, you can see the pseudocode
of two rules.

 D2.4 Final SeaClouds Architecture 33

Figure 12. Monitoring rules pseudocode

The execution of the first rule will result in the following behavior. All data collectors in
charge of monitoring CPU metric on all VMs of type Frontend will send a monitoring
datum every 10 seconds. The Data Analyzer will compute every 60 seconds the
Average of the last 60 seconds of data. It will also partition data per VM and output the
results as frontend_average_cpu metric.

The second rule is acquiring the datum RespTime (response time) measured at the
level of each call of the Register method. This datum is acquired by the data collector
with probability 0.5. Every 60 seconds the data analyzer computes the 95th percentile
of this response time considering the data acquired in the last 60 seconds.

The result of this calculation is grouped by cloud provider. If such a metric is greater
than 2000, the register_95p_rt_violation metric is produced. This metric could be
observed, for instance, by the Deployer that could take some recovery action (e.g.,
scaling up).

<monitoringRule timeWindow="60" timeStep="60" id="cpuRule">
 <monitoredTargets>
 <monitoredTarget class="VM" type="Frontend" />
 </monitoredTargets>
 <collectedMetric metricName="CpuUtilization">
 <parameter name="samplingTime">10</parameter>
 </collectedMetric>
 <metricAggregation aggregateFunction="Average"
 groupingClass="VM" />
 <actions>
 <action name="OutputMetric">
 <parameter name="name">frontend_average_cpu</parameter>
 </action>
 </actions>
</monitoringRule>

Figure 13 XML code of a simple monitoring rule.

 D2.4 Final SeaClouds Architecture 34

Figure 13 shows the full code of the first monitoring rule in Figure 12. MODAClouds
deliverable D5.2.2 [14] provides more details on this language.

A component willing to observe an OutputMetric generated by the DDA is called
Metric Observer. It should expose a REST endpoint and will receive monitoring data
serialized as RDF JSON. A Java library that simplifies the creation of a REST endpoint
and data de-serialization is available.

The Monitoring Manager is responsible for the correct configuration of the monitoring
platform and abstracts all its complexity to the external users. It offers a REST interface
for:

 Installing/uninstalling monitoring rules

 Attaching/detaching observers to metrics

 Updating the live model (described according to the monitoring meta-model) of
the system being monitored.

Figure 14 shows an overall diagram of the interaction between the Monitor and the
rest of components in SeaClouds. The interaction with the Monitor occurs through its
REST interface. More specifically:

 The Dashboard registers as an observer for all monitoring rules generating
events that should be shown to the user.

 The Deployer registers as an observer for all monitoring rules generating events
that should trigger some repairing actions. Moreover, the Deployer passes to or
updates into the Monitor the live model each time a new application is
deployed or it is replanned (either through replanning or through repairing),
respectively.

 The Planner registers as an observer for the monitoring rules generating the
replanning event. This is generated by the monitoring platform upon reception
of an event that is acquired by the Data Collector that monitors the application
Live Model managed by the Deployer.

 The SLA Service registers as an observer for all monitoring rules generating
events indicating an SLA violation.

 D2.4 Final SeaClouds Architecture 35

Figure 14. Monitoring strategy: interaction between components

3.5. SLA Service

As regards the SLA Service, its functionality and architecture are described in Table 6

and Figure 15 respectively.

Component SLA Service

Description/

Functionality

The SLA Service represents the component responsible for

generating and storing the formal documents describing

electronic agreements between the parties involved in

SeaClouds: customers, application providers and cloud

 D2.4 Final SeaClouds Architecture 36

providers.

However, in the scope of the project, SLAs do not aim at

representing a contractual relationship between the

customers consuming a service and the vendors that provide

them. SLAs describe the service that is delivered, the

functional and non-functional properties of the resource, and

the duties of each party involved.

At runtime, the component is in charge of supervising that all

the agreements are respected. Because QoS is already

assessed by the Monitor Component, the SLA service is more

focused on the enforcement of business oriented policies

(QoB: Quality of Business), which represent a constraint on a

metric that impact on the business of the application, and the

business actions to apply in case of violation. It relies on the

Monitor Component to fulfill this task. As a result of the

enforcement process, the component stores the produced

QoS and QoB violations and penalties, maintains the

fulfillment state of each agreement and notifies the results to

other components.

The SLA Service exposes the basic functionalities of handling

providers, templates and agreements, and searching of

violations and penalties, through a REST interface. It also

offers the possibility to push events, such as violations and

penalties, to subscribed components.

Inputs In order to generate an agreement, the SLA Service uses the

Deployable Application Model and the set of business rules

defined by the application designer.

While the Planner component provides the inputs to create

the SLA Agreements, the Deployer component will trigger the

start of the SLA enforcement at runtime, once the application

has been deployed.

In order to enforce an agreement, the SLA Service will be

subscribed to the Monitor Component, which notifies about

QoS violations.

 D2.4 Final SeaClouds Architecture 37

Outputs The component outputs:

● The agreement between an end user and the

application provider, and the agreements between the

application provider and each cloud provider where

the application is going to be deployed. These

agreements correspond to the two levels of SLA

explained below,

● The notification of raised violations and penalties

(including replanning triggers).

Interactions and

Interfaces

The SLA Service offers a REST interface to interact with. The

expected interactions are:

● GUI: consulting of agreements status, violations and

penalties by the application administrator.

● Accounting/billing component: an external component

may interact with SLA Service in order to obtain the

business penalties that have occurred.

Table 6. SLA Service description

Figure 15. Architecture of the SLA Service

 D2.4 Final SeaClouds Architecture 38

Figure 15 gives a detailed overview of the software components of the SLA Service and
how they are related to other SeaClouds services.

The SLA Service enables the Service Level Agreements (SLA) management of business
oriented policies. The main responsibilities of the SLA service are: generating and
storing WS-Agreement templates and agreements, and assessing that all the
agreements (SLA guarantees) are respected by evaluating the business rules.

The SLA Service is an implementation of the WS-Agreement specification [15], which
defines schemas for SLA Templates and SLA Agreements. A summary of the format of
agreements and templates can be located at [16].

According to WS-Agreement:

 A template is a document used by the service provider to advertise the types of
offers it is willing to accept.

 An agreement defines a dynamically-established and dynamically-managed
relationship between a provider and a customer, where the object of this
relationship is the delivery of a service by the provider to the customer.

A template or agreement contains functional and nonfunctional terms that describes
the service being delivered. In SeaClouds, we are mostly interested in nonfunctional
terms (Guarantee Terms), where a Service Level Objective (SLO) is defined as a
constraint on a metric, and a list of business values describing the result of not fulfilling
an objective.

The templates may be used as a base to create the actual agreements. Also, an
agreement may contain additional terms not found in a template. For example, in
SeaClouds, the agreements will contain Quality of Business (QoB) policies specified by
the application designer, but not specified in a cloud provider template.

The purpose of QoB constraints is to perform a long-term analysis of the service, while
the QoS constraints evaluated by the Monitor Component have a closer look at the
performance of application.

A QoB rule is defined like this:

 A constraint over a metric provided by sensors (e.g. runtime < 2000ms). A non-
fulfilled constraint is considered a breach.

 A time window where the number of breaches must be below a threshold (e.g.
5 breaches /day). If this time window is violated, a QoB violation is raised, and
the business values take place (discount, migrations, downrating, other
recovery actions…)

 The business action that takes place in the case of violation. This action may
also be defined inside a time window. For example, 3 violations of a constraint

 D2.4 Final SeaClouds Architecture 39

in a day are penalized with a discount, and 5 violations in a day are penalized
with a trial of a service during one month.

In SeaClouds, we identify two levels of SLA, depending of the involved parties of the
agreement:

 Customer (End user) - Application Provider SLA (C-AP SLA)

 Application Provider - Cloud Provider SLA (AP-CP SLA)

The Customer-Application Provider level describes the service offered by the
Application Provider to their users. In this SLA level, there is one template per full
application.

When generating the agreement from the template, the customer party in the
agreement may be not an actual customer, but a generic one; this makes sense on
applications that offer a free service to their users, not requiring a previous
registration.

The guarantee terms in this C-AP SLA should only watch observable metrics by the end
user. The purpose is to measure the Quality of Experience (QoE) that the user
perceives when he/she is using the application. Examples of suitable metrics are:
application request times, availabilities, continuity of video streaming... The
application provider have the possibility to add business values to the guarantee
terms, in order to describe the penalties that the application provider will incur if the
term is violated. A possible penalty is a discount in the monthly fee.

One interesting fact about this level is that it will take the output of the Optimizer
Module, where an optimum QoS for the application has been calculated, to generate
this C-AP SLA.

The Application Provider-Cloud Provider level describes the service offered by the
cloud provider to the Application Provider. For example, the Amazon offers are
described in a set of templates, where the QoS assured and the corresponding
penalties if not fulfilled are stored. These templates are filled with the SLA offers
advertised by each cloud provider.

In this SLA level, there is one agreement for each cloud provider where the application
is deployed.

The application designer can enrich the agreements based on the cloud provider
templates with other QoB terms. Due to the fact that the cloud provider enforces its
own SLA, and therefore, SeaClouds cannot impose any penalty to the cloud provider,
the actions that make sense to be specified here are unilateral actions. The most
obvious action of this type is a migration of the modules in the affected cloud provider
to another cloud provider. In SeaClouds, this is achieved with a replanning trigger
generated by the SLA Service.

 D2.4 Final SeaClouds Architecture 40

This SLA level performs a second assessment of the actual SLA enforced by the cloud
provider, although monitored by the Monitor component. In this way, the application
provider can check at the end of the billing cycle the QoS violations incurred by the
cloud provider, and verify that the corresponding discounts have been applied.

In Figure 16 is shown an overview of the flow of interactions with the rest of
components of SeaClouds.

Figure 16. SLA Service strategy: interaction between components

3.6 GUI and Dashboard

The intention of the SeaClouds dashboard is to interact with all the SeaClouds
components with an integrated and composed single view of the platform.

Table 7 details the main functionalities per each component UI.

Component GUI

Description/

Functionality

The GUI is focused on the implementation of an easy way

to use topology editor.

The GUI constitutes the uppermost layer in the SeaClouds

architecture.

Inputs The user input

 D2.4 Final SeaClouds Architecture 41

Outputs Abstract Application Model

Interactions and

Interfaces

The GUI includes UIs for all the SeaClouds Components.

Table 7. GUI description

In the SeaClouds GUI, the Discoverer UI allows the user to discover available
capabilities offered by cloud providers, including technology aspects, QoS properties,
SLAs. It also allows the use of existing directories to collect cloud providers and
services.

The Planner UI, the application designer models the application topology, i.e. the
modules that compose the application, the relationships between them, along with
the desired QoS. As per the objectives of the Planner component, this UI allows the
topology designer to specify a simple topology of the application.

After this step, the application administrator can specify the adaptation and business
policies, and asks for an initial AMM. The Planner UI is a decision-support tool, and it
will produce a number of feasible AMM that satisfy the application administrator
requirements.

The application administrator has to select the AMM plan which fits better his
expectations and needs. If none of them looks fine, he can change some/all of the
requirements and generate a new set of suggestions.

Once the application is deployed, the application administrator can monitor the
application performance.

The Deployer UI is used to verify the deployment of the application. Once deployed,
the application administrator can check the status of all the modules that comprise the
application. The administrator can also manage lifecycle of the application (start or
stop a module).

The Monitor UI is where the application administrator can review the application
performance, choosing to view real-time data and/or historical data of the monitored
metrics.

The SLA Service UI is where the application administrator can review the behavior of
the application in terms of violations of QoS and QoB, and the associated penalties.
With this info, the administrator may decide to replan the application.

The Dashboard functionalities are defined in Table 8.

 D2.4 Final SeaClouds Architecture 42

Component Dashboard

Description/

Functionality

The dashboard provides an easy way to interact with the

SeaClouds Platform. It allows a final user to follow the

entire application lifecycle (topology definition, discovering

the best providers, deploying the application, monitoring

the application metrics/SLA and triggering

reconfigurations).

The Dashboard Component is a Web application which runs

on any browser. It relies on the REST API to interact with

the other components.

Inputs User inputs

Outputs User triggered actions and the Abstract Application Model

Interactions and

Interfaces

The Dashboard “consumes” the information provided by

the SeaClouds components by using a REST API exposed on

each component.

Table 8. Dashboard description

The intention of the SeaClouds dashboard is to interact with all the tools that have
been implemented in the platform, in order to facilitate the use of the software
capabilities.

We try to move away from the typical full integrated management application,
focusing on innovative aspects. To achieve this, there is a strong effort in developing a
client side written in JavaScript that interacts with the needed modules consuming
their REST interfaces, in order to obtain an easy to use and responsive application.

The development of the dashboard will produce a set of modules, each one interacting
with a different SeaClouds capability: Application Topology Design, Management, SLA,
Monitoring, etc. The implementation of these modules will prioritize the functionality,
leaving the goal of obtaining a uniform look as a less important topic.

 D2.4 Final SeaClouds Architecture 43

4. Mapping the SeaClouds functionalities to the Case Studies

SeaClouds provides an integrated and open source “DevOps” multi-cloud application
management system with seven basic capabilities (listed in Table 9) that span the
Design and Runtime Management of Complex Business Applications. SeaClouds will be
delivered to application developers and operators via an innovative graphical user
interface (GUI).

The next table summarizes the contribution we expect from the SeaClouds tools to the
development of the ATOS Social-Networking and NURO Cloud Gaming Case Study.

The functionalities offered by the Case Studies are characterized by grades in a 1 to 5
scale (1 = less important to 5 = very important) concerning the level of the importance
of the development of the functionalities.

SeaClouds basic
Functionalities

ATOS Social-Networking
Case Study

NURO Cloud Gaming
Case Study

Matchmaking: Querying
and browsing for the
best-fit cloud offering
based on the application
requirements.

[Grade = 4]
- Functional and non-functional
requirements (Cost, Location,
Response Time and Availability)
- The QoS design / modelling
(based on WS-Agreement) allows
refining the design of the
architecture of the application
leveraging on real QoS
requirements from the
application provider and
application customer point of
view.

[Grade = 3]
- The SeaClouds
Matchmaking
considers some
aspects for the NURO
use case, such as,
limited budgets,
technical
requirements, QoS
properties

Cloud Service Optimizer:
Optimizing the
deployment of an
application across Clouds
to address functional
requirements.

[Grade = 2]
- Application topology
Optimization based on the
maximization of the benefit for
the Application provider in terms
of Cost or following a QoS
strategy

[Grade = 4]
- Performance
optimization
considering the
application topology

Application
Management
(application Deployment
and Governance):
Streamlined “multi-
cloud” management of
applications across

[Grade = 5]
- The SeaClouds Runtime tools
will allow reducing the
operational overhead with multi-
cloud application management
providing unified API to govern
the application (included the

[Grade = 4]
- Some issues that the
SeaClouds Runtime
environment can
manage in the case
study are: save
system

 D2.4 Final SeaClouds Architecture 44

Clouds. deployment and the un-
deployment of the modules of a
complex application) unified
metrics across all deployed
applications allowing comparing
and contrasting between
applications’ performance across
Clouds infrastructures

administrational
effort, unified cost
controlling, unified
billing

Monitoring and SLA:
Monitoring of
applications deployed on
several Clouds, using
universal metrics and
user-defined SLA policies.

[Grade = 5]
- SeaClouds runtime tools reply to
the need to verify/enforce the
Application SLA at runtime. When
the system detects a violation of
an SLA agreement the system
properly reacts triggering user
policies.

[Grade = 5]
- As regards the
monitoring and SLA:
minimizing
operational effort,
and automated alerts
and actions

Repairing (Cloud
resource scaling). Scale
cloud resources to
maximize the
performance of the
application; restart and
replace failed
components

[Grade = 4]
- This functionality will ensure the
application will remain responsive
and its performance is affected
by, i.e. increased stream data
traffic or by complex analysis
involved, since the system will be
self-adaptive to these cases by
scaling out and down, depending
on resources needed.

[Grade = 5]
- In the case of this
case study,
automated scaling is
very important in real
scenarios

Replaning and

Application migration:
Enables portability of
applications between
dissimilar clouds (but
functionally compatible)

[Grade = 3]
- The functionality may be useful
in the case of a “disaster recovery
plan”. SeaClouds supports in a
semi-automated way the
portability of the application
between dissimilar clouds
overcoming the vendor lock-in.

[Grade = 4]
- This functionality
beyond vendor lock-
in, migrating modules
as required in the case
study

Database migration and
data synchronization:
Enables portability of
data between dissimilar
Clouds

[Grade = 3]
- When the Application migration
happens, the Persistent Layer of
the Application should be
migrated as well, maintaining its
data synchronized.

[Grade = 3]
- Using this
functionality, the case
study could benefits
of
simplifying failover

Table 9. SeaClouds functionalities matching with the Case Studies

 D2.4 Final SeaClouds Architecture 45

5. Conclusions

In this document, we have presented the Final SeaClouds Architecture. The project
aims at providing an open source framework to address the problem of deploying,
managing and reconfiguring complex applications over multiple and heterogeneous
clouds.

The SeaClouds approach works towards achieving “Agility After Deployment” by
tackling the problem from the service orchestration perspective, applying an agile
execution approach, stressing both the design time with the development and
planning, and the runtime with the deployment, monitoring and reconfiguration of
cloud applications. Following the architecture proposed, first, the exploitation of the
best available offering for each application component at any time is performed. Then,
a complex application, which consists of modules and (technological and QoS)
requirements, is provided as input to the SeaClouds planner. The latter generates the
orchestration by assigning (groups of) modules to different cloud providers. Such
orchestration is then deployed and monitored according to standard metrics. If
requirements are violated, then the SeaClouds monitor will generate reconfiguration
information which leverages the creation of a different orchestration of the
application.

Therefore, the proposed architecture can well support this process of deploying and
managing a cloud application over multiple clouds.

Thanks to the seamless distribution over several different platforms and infrastructure
clouds, applications developed in SeaClouds will also take advantage of higher
availability (via inter-cloud redundancy), higher security (via inter-cloud data partition)
and higher throughput (via inter-cloud load balancing).

A key ingredient in our proposal is the use of two OASIS standards initiatives for cloud
interoperability, namely CAMP and TOSCA, which allow us to describe the topology of
user applications independently of cloud providers, provide abstract plans, and
discover, deploy/reconfigure, and monitor our applications independently of the
particularities of the cloud providers.

 D2.4 Final SeaClouds Architecture 46

References

1. SeaClouds Project. Deliverable D2.2 Initial Architecture and design of the SeaClouds

Platform (SeaClouds Consortium), http://seaclouds-project.eu/deliverables/SeaClouds-

D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf, 2014.

2. SeaClouds Project. Deliverable D3.1 Discovery, Design and Orchestration

Functionalities: First Specification (SeaClouds Consortium), http://seaclouds-

project.eu/deliverables/SEACLOUDS-D3.1-

Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf,

2014.

3. SeaClouds Project. Deliverable D4.1 Definition of the multi-deployment and

monitoring strategies (SeaClouds Consortium), http://seaclouds-

project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-

deployment_and_monitoring_strategies.pdf, 2014.

4. OASIS. TOSCA 1.0 (Topology and Orchestration Specification for Cloud Applications),

Version 1.0, http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013.

5. OASIS. CAMP 1.1 (Cloud Application Management for Platforms), Version 1.1,

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf, 2014.

6. SeaClouds Project. Deliverable D4.2 Cloud Application Programming Interface

(SeaClouds Consortium), http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-

Cloud_Application_Programming_Interface.pdf, 2014.

7. Deliverable 4.5. Unified dashboard and revision of Cloud API, coming on the next

months.

8. Apache Brooklyn. https://brooklyn.incubator.apache.org/, 2014.

9. Apache jClouds. The Java Multi-Cloud Toolkit, https://jclouds.apache.org/, 2014.

10. Brooklyn YAML Blueprint Reference, http://brooklyncentral.github.io/v/0.7.0-

SNAPSHOT/use/guide/defining-applications/yaml-reference.html, CloudSoft, 2014.

11. SeaClouds Project. Deliverable D4.3 Design of the run-time reconfiguration process

(SeaClouds Consortium), coming on the next months.

12. MODAClouds Data Cololector Factory https://github.com/deib-polimi/modaclouds-

data-collector-factory

13. MODAClouds deliverable D6.3.2 http://www.modaclouds.eu/wp-

content/uploads/2012/09/MODAClouds_D6.3.2_MonitoringPlatformFinalRelease.pdf

http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.1_Definition_of_the_multi-deployment_and_monitoring_strategies.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-Cloud_Application_Programming_Interface.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D4.2-Cloud_Application_Programming_Interface.pdf
https://brooklyn.incubator.apache.org/
https://brooklyn.incubator.apache.org/
https://jclouds.apache.org/
https://jclouds.apache.org/
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-applications/yaml-reference.html
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-applications/yaml-reference.html
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-applications/yaml-reference.html
https://github.com/deib-polimi/modaclouds-data-collector-factory
https://github.com/deib-polimi/modaclouds-data-collector-factory
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.3.2_MonitoringPlatformFinalRelease.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.3.2_MonitoringPlatformFinalRelease.pdf

 D2.4 Final SeaClouds Architecture 47

14. MODAClouds deliverable D5.2.2 http://www.modaclouds.eu/wp-

content/uploads/2012/09/MODAClouds_D5.2.2_-

MODACloudMLQoSAbstractionsAndPredictionModelsSpecificationFinalVersion.pdf

15. Web Services Agreement Specification (WS-Agreement)

http://www.ogf.org/documents/GFD.192, Open Grid Forum, 2011

16. Guide to WS-Agreement Language, Open Grid Forum https://packcs-

e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html, 2014.

http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.2.2_-MODACloudMLQoSAbstractionsAndPredictionModelsSpecificationFinalVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.2.2_-MODACloudMLQoSAbstractionsAndPredictionModelsSpecificationFinalVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D5.2.2_-MODACloudMLQoSAbstractionsAndPredictionModelsSpecificationFinalVersion.pdf
http://www.ogf.org/documents/GFD.192
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html

