

SeaClouds Open

Reference Architecture

White Paper
October 2014

SeaClouds Consortium

www.seaclouds-project.eu

http://www.seaclouds-project.eu/

 2 SeaClouds Open Reference Architecture

Executive summary

Cloud computing is a model for enabling convenient and on-demand network access to a

shared pool of configurable computing resources that can be rapidly provisioned and

released with minimal management effort or service provider interaction [1]. The cloud

helps to reduce time-to-market and provides on-demand scalability at a low cost for the

users. Due to its prospective benefits and potential, cloud computing is a hot research

area. Many private and public clouds have emerged during the last years, offering a wide

range of different services at SaaS, PaaS and IaaS levels aimed at matching different user

requirements. To take full benefit of the flexibility provided by different clouds that offer

different services, the modules of a complex application should be deployed on multiple

clouds depending on their characteristics and strong points.

Current cloud technologies suffer from a lack of standardization, with different providers

offering similar resources in a different manner [2]. This heterogeneity refers to diversities

in supported programming tools, in the various types of underlying infrastructures, and

even on available capabilities. As a result, cloud developers are often locked in a specific

platform environment because it is practically unfeasible for them, due to high complexity

and cost, to move their applications from one platform to another [3]. Since migrating a

single application is a cumbersome and manual process, the deployment, management

and reconfiguration of complex applications over multiple clouds is even harder. To

overcome the vendor lock-in problem, various standardisation efforts are currently

ongoing, such as OASIS Cloud Application Management for Platforms (CAMP) [4], DMTF

Cloud Infrastructure Management Interface (CIMI) [5], Virtualization Management

(VMAN) [6], or OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA) [7], just to mention some of them. Furthermore, different vendors (e.g., Dell1,

BMC2, Abiquo3) are currently commercialising tools for the provisioning, management and

automation of applications in leading public and private clouds. A promising perspective,

opened by the availability of different cloud providers, is the possibility of distributing

cloud applications over multiple heterogeneous clouds. Indeed, as pointed out by [8],

cloud adoption will be hampered if there will be no suitable way of managing data and

applications across multiple clouds. In a scenario where a complex application is

distributed on different cloud service providers, a solution is needed in order to manage

and orchestrate the distribution of modules in a sound and adaptive way. Such solution

should determine the best cloud provider for each particular module based on client

requirements (e.g., availability, cost). Once the distribution has been decided, the solution

1
 http://www.enstratius.com/

2
 http://www.bmc.com/

3
 http://www.abiquo.com/

http://www.enstratius.com/
http://www.bmc.com/
http://www.abiquo.com/

 3 SeaClouds Open Reference Architecture

should support operations such as managing the relationships between the different

modules, maintaining all the specified properties and requirements, and monitoring and

reconfiguring the distribution in case any problem occurs during operation.

Therefore, how to deploy and manage, in an efficient and adaptive way, complex

applications across multiple heterogeneous cloud platforms is one of the problems that

have emerged with the cloud revolution.

In this White Paper we present the SeaClouds Open Reference Architecture. First, in

order to understand the main goal of the European Project SeaClouds, we describe the

context, motivations, objectives and positioning with respect to related cloud initiatives

and standards. SeaClouds aims at enabling a seamless adaptive multi-cloud management

of complex applications by supporting the distribution, monitoring and migration of

application modules over multiple heterogeneous cloud platforms. Then, we present the

reference architecture and discuss some of its main aspects.

SeaClouds provides the foundation for allowing “Agility After Deployment”
providing necessary tools and a framework for Modelling, Planning and Controlling
Cloud Applications.

SeaClouds answers questions such as:

 How can a complex cloud application be deployed, managed and monitored
over multiple and heterogeneous infrastructures Clouds?

 How can the underlying cloud providers be monitored to check for quality of
service compliance?

 How can applications be reconfigured if any problem or deviation from
normal execution patterns is detected in any component at run time?

Challenges and Positioning of SeaClouds

SeaClouds works towards giving organizations the capability of “Agility After

Deployment” for cloud-based applications. The approach is based on the concept of

service orchestration and designed to fulfill functional and non-functional properties over

the whole application. Applications will be dynamically reconfigured by changing the

orchestration of the services they use when the monitoring will detect that such

properties are not respected. So, SeaClouds' main goal is the development of a novel

platform which performs a seamless adaptive multi-cloud management of service-based

applications, with four specific objectives (presented below). For each objective, the

SeaClouds consortium plans to tackle a set of challenges, which are described in depth in

Deliverable D2.2, related to Initial architecture and design of the SeaClouds platform [9].

 4 SeaClouds Open Reference Architecture

Orchestration and adaptation of
services distributed over different

cloud providers.
SeaClouds aims at providing the
assisted design, synthesis, and

simulation of service orchestrations on
cloud providers, distributing modules
from a cloud-based application over
multiple and heterogeneous clouds.

Monitoring and run-time
reconfiguration operations of services

distributed over multiple heterogeneous
cloud providers.

Monitoring will be in charge of detecting
the need of redistributing services on
several cloud providers, reconfiguring

and migrating modules when required.

Offer unified application management
of services distributed over different

cloud providers.
SeaClouds will be able to deploy,

manage, scale and monitor services
over technologically diverse clouds

providers.

Compliance with major standards for
cloud interoperability.

SeaClouds will manage applications
deployed on technologically diverse

cloud platforms, promoting the adoption
of OASIS TOSCA and CAMP standards

for cloud interoperability.

Figure 1 illustrates how SeaClouds intends to relate to existing cloud initiatives and

standards [10]. The top layer shows the main components generated in SeaClouds, and

the other layers depict the relationships with existing efforts.

Figure 1. Position of SeaClouds with respect to related initiatives

 5 SeaClouds Open Reference Architecture

The SeaClouds Approach

Figure 2 shows the cloud architecture situation before (top) and after SeaClouds (bottom).

Without SeaClouds, services can only be deployed, managed and monitored across

multiple clouds as standalone applications, and not as part of a composite application.

This has the consequence that there is no support for synchronized deployment and

unified monitoring, which implies that the QoS of the entire application is difficult to

monitor. There is no support for migrating one service and reconfiguring the rest of the

application to use the migrated service, in case a provider does not respect its SLA.

Figure 2. Cloud architecture before and after SeaClouds

SeaClouds aims at homogenizing the management over different providers and at

supporting the sound and scalable orchestration of services across them. Moreover,

systems developed with SeaClouds will inherently support the evolution of their

constituent services, so as to easily cope up with needed changes, even at runtime. The

development, monitoring and reconfiguration via SeaClouds include a unified

management service, where services can be deployed, replicated, and administered by

means of standard harmonized APIs such as CAMP specification and Cloud4SOA project.

In the following, we list some of the current problems and barriers, related to the cloud

that will be solved by the main results expected from SeaClouds.

1. Support for application deployment and migration to different providers.

SeaClouds will provide support for deploying and migrating applications composed

of several services taking care of the synchronization of the services and their

reconfiguration, without requiring the user to manually intervene.

 6 SeaClouds Open Reference Architecture

2. Management and monitoring of underlying providers. Properties over application

and services deployed on multiple clouds can be ensured and managed in a

standardized way by using unified metrics and automated auditing.

3. Increased availability and higher security. The usage of formal models to support

the management of service-based applications over multi-clouds environments

gives more flexibility to reconfigure the distribution as a SLA violation occurs.

4. Performance and cost optimization. The framework gives users freedom to

distribute application requirements over different cloud offerings by using needed

options in a flexible manner. Organizations can take advantage of useful and

powerful services provided by each platform and avoiding its weaknesses.

Optimization requirements can also be modelled to consider cost as the main

decision parameter.

5. Low impact on the code and user-friendly interface. SeaClouds will tackle different

problems for developers and administrators of cloud applications thanks to the

proposed orchestration model. First, by simplifying the development process with

SeaClouds' range of tools and framework that require minor impact on the code,

and second, by simplifying the management of already deployed complex cloud

applications thanks to the SeaClouds dashboard.

SeaClouds Open Reference Architecture

This main section presents the reference architecture and design of the SeaClouds

platform, and discusses its novel aspects compared to existing initiatives and efforts.

Figure 3 depicts the reference architecture of the SeaClouds platform.

Before describing the core components of the architecture of the SeaClouds platform, it is

worth observing that the platform features a Graphical User Interface (GUI) for two user

roles (Designers and Deployment Managers), and that Cloud Provider Systems are

considered. The main stakeholders for the SeaClouds platform are the following:

● Application Designer (or Developer) exploits the GUI to provide a description of

the topology of the application to be deployed together with a set of

requirements. These requirements can include QoS properties and technology

requirements for the application modules, and the maximum acceptable cost for

the entire deployment.

● Deployment Manager (or Application Manager) exploits the GUI through a

Unified Dashboard that allows them to supervise the deployment and the

monitoring of the application.

 7 SeaClouds Open Reference Architecture

● Cloud Providers provide the Cloud Resources (which offer some Cloud

Capabilities). They do not necessarily interact directly with the SeaClouds platform,

but the services offered are exploited by the platform to run service compositions.

Cloud Systems

under

Management

Engine

(Planner /

Controller)

Cloud

Provider Pn

Cloud

Provider Pm-n

Cloud

Provider Pm

TOSCA-compliant

CAMP-compliant

Seaclouds API

GUI /

Unified Dashboard
Deployment Manager

view

Designer

view

D
e

p
lo

y
e

r

A
P

I
D

is
c

o
v

e
re

r

A
P

I

SLAs

Deployable

App Model
Monitor

Planner

Available

Capabilities

& SLAs

Requirements

App Topology

Replanning

trigger

Monitoring

info

Capabilities

seeking

Capabilities

response

Deployer

Discoverer

M
o

n
ito

r

A
P

I

Status

request

Status

info

Concrete

Deployment

Plan DPn

Concrete

Deployment

Plan DPm-n

Cloud

Provider Pn-1

Cloud

Provider P2

Non-TOSCA/

CAMP-compliant

Cloud

Provider P1

Selected

SLAs
Selected

Deloyable App

Model

SLA Service
Business

SLA info

Live

Model

Planner

API

SLA Service

API

Figure 3. Initial Architecture of the SeaClouds Platform

As regards the SeaClouds platform functionalities, five components are identified in the

architecture, in addition to the REST harmonized and unified SeaClouds API used for the

deployment, management and monitoring of simple cloud-based applications through

different and heterogeneous cloud providers.

● SeaClouds Discoverer: in charge of discovering (by using the Discoverer API)

available capabilities and add-ons offered by available cloud providers.

● SeaClouds Planner: in charge of implementing planning policy (using the Planner

API) to orchestrate the multi-cloud deployment of the application modules.

● SeaClouds Deployer: in charge of taking as input the orchestration specification

generated by the Planner, and deploying (by exploiting the Deployer API) the

application modules on the specified clouds.

● SeaClouds Monitor: in charge of monitoring (by means of the Monitor API) that

the QoS properties of the application modules and the whole application are not

violated by the clouds in which they were deployed. Also in charge of generating

the reconfiguration suggestions (if needed) to be passed as inputs to the Planner

component to trigger the generation of a new adaptive orchestration plan.

 8 SeaClouds Open Reference Architecture

● SeaClouds SLA Service: in charge of mapping (by using the SLA Service API) the low

level information gathered from the Monitor into business level information about

the fulfilment of the SLA defined for a SeaClouds application.

Figure 4 represents the steps necessary to carry out an application deployment from the

initial stage where the Application Developer (end-user) provides the Application Model

consisting of the Module Profile and the Topology representing the connections among

the modules of the cloud application to be deployed (other elements as the SLA

restrictions and policies are considered by SeaClouds), as described in detail in Deliverable

D3.1 [11], related to the design-time.

Figure 4. Interaction flow between the SeaClouds components

SeaClouds follows the Application Model Lifecycle depicted in Figure 5. After the Abstract

Application Model has been specified, SeaClouds starts the Discoverer and Planner stage.

Once the cloud providers have been discovered, the Planner acts with two subprocesses:

Matchmaking and Optimizer (described in D3.1). The Planner specifies an Abstract

Deployment Plan (ADP) that defines, in an abstract way, where each application module

will be deployed.

 9 SeaClouds Open Reference Architecture

Figure 5. Interaction between the SeaClouds components

Then, as result of the Planner, by means of the ADP, a Deployable Application Model

(DAM) is generated, which specifies the concrete cloud services used to distribute the

application. The DAM allows the deployment of the application’s modules over

heterogeneous IaaS and PaaS, using the Deployer component, detailed in Deliverable D4.1

[12] related to the run-time environment. Once the application is deployed, the Deployer

manages it and notifies the Monitor, which initializes the monitoring of the applications

and interacts with the SLA service to manage the violations of the QoS and QoB, and

properties. A Live Application Model maintains a track of the dynamic evolution of the

deployment and management of the application modules.

A GUI as Dashboard is also used for the interaction with the Application Administrator.

Note that a Persistent Layer should be considered to maintain a continue store (e.g., the

QoS violations).

A distinguishing aspect of the SeaClouds architecture is that it builds on top of two OASIS

standards initiatives: TOSCA and CAMP. On the one hand, besides employing TOSCA to

represent application topologies, TOSCA's plans are also exploited in the deployment

phase to generate TOSCA CSARs (Cloud Service ARchives - containing an application

specification together with implementation and deployment artifacts) that can be

automatically processed by any TOSCA-compliant platform. On the other hand, SeaClouds

also employs CAMP, which proposes standardised artifacts and APIs that need to be

offered by PaaS clouds to manage the building, running, administration, monitoring and

patching of applications in the cloud. It is however worth noting the Deployer does not

 10 SeaClouds Open Reference Architecture

require cloud providers to be TOSCA or CAMP compliant, and it actually generates

concrete deployment plans for non TOSCA/CAMP compliant providers as needed.

Next, we describe more in detail the components and services, their functionalities,

interactions, and the inputs/outputs of the SeaClouds platform.

SeaClouds Discoverer

The main functionality of the Discoverer component is described in Table 1.

Table 1. Discoverer component description

Component Discoverer

Description/
Functionality

The Discoverer component is in charge of discovering available
capabilities offered by cloud providers. The description of such
capabilities includes technology aspects (e.g., programming
languages, development frameworks, runtime environments, add-
ons), QoS properties (e.g., availability, reliability), along with the
associated SLAs (including the cost associated to each provided
service). The Discoverer periodically crawls the cloud providers
and stores the discovered capabilities in a repository which is
accessible to the Planner component as well as to the Deployment
Manager.

Inputs
Cloud provider capabilities (specified as cloud meta-model into
TOSCA concepts) and desired SLAs.

Outputs
Cloud provider capabilities available and SLAs to be sent to the
planner and the dashboard.

Interactions and
Interfaces

This component interacts with the Planner and the Dashboard.
The Planner will consume the result of the discoverer to perform a
matchmaking process and to decide where to deploy each
application module according to its QoS and technology
requirements. The GUI/Dashboard will present the result of the
discoverer to the end-user. Optionally, this component could also
receive automatic updates from cloud providers.

 11 SeaClouds Open Reference Architecture

SeaClouds Planner

The Planner description and architecture is presented in Table 2 and Figure 6, respectively.

Table 2. Planner component description

Component Planner

Description/
Functionality

The Planner component receives from the application designer a
description of the application topology together with a set of
requirements (that include QoS properties and technology
requirements) for the application modules, and it determines (by
consulting the capabilities repository) how the application
modules can be distributed over the available clouds without
violating the given set of requirements. The Planner is first
triggered by the application Designer input and then by replanning
triggers generated by the Monitor component (possibly filtered by
the Deployment Manager). The Planner generates an
intermediate Abstract Deployment Plan (ADP), describing a
feasible distribution of the application modules over the available
clouds, with the final result as output of a Deployable Application
Model (DAM) specifying the concrete cloud services where
distributing the application modules. This is generated in two
steps, Matchmaking and Optimization, includes the concrete
services associated with each Base module and the policies to
manage the scaling mechanism of each module.

Inputs
QoS properties and technology requirements, application
topology, available capabilities and SLAs, and replanning trigger.

Outputs Deployale Application Model (DAM) and related SLAs.

Interactions and
Interfaces

The Planner receives the requirements and application topology
from the Application Designer, by means of the GUI/Dashboard. It
interacts with the Discoverer component to acquire the available
capabilities and SLAs. It specifies the ADP used to generate the
concrete Deployable Plan, DAM (returned to the Deployment
Manager), so it connects also with the Deployer. It receives
replanning trigger from the Monitor component, and also from
Deployment Manager (connected through the GUI/Dashboard).

 12 SeaClouds Open Reference Architecture

Figure 5. Architecture of the Discoverer and Planner components

As depicted in the architecture, the generation of the final Deployable Application Model

using the Abstract Deployment Plan is performed in two steps:

1) Matchmaking: this first step aims to identify the cloud resources that are suitable

to allocate each module.

2) Optimization: once a set of suitable cloud services have been identified for each

modules, an optimization process can be performed.

SeaClouds Deployer

Table 3 describes the main functionality of the Deployer component, whose architecture

is presented in Figure 7.

Component Deployer

Description/
Functionality

The Deployer component inputs a deployable application model,
together with the SLAs of the selected services, and it internally
generates a concrete deployment plan for each target cloud
platform. Concrete deployment plans include all the needed steps
to be performed to actually deploy a (set of) application module(s)
on a (set of) specific cloud platform(s).

Inputs
The Deployable Application Model (DAM), which contains the plan
describing the steps to deploy the application. This plan has to be
approved by the Deployment Manager. Also, the selected SLAs are

 13 SeaClouds Open Reference Architecture

Table 3. Deployer component description

Figure 6. Architecture of the Deployer component

The deployer is composed of several elements. The main element of our SeaClouds

Deployer is the Deployer Engine. The Deployer Engine receives a Deployable Application

Model (DAM) through its Deployer API and executes the DAM. As the Deployer Engine is

cloud-agnostic, it is able to deploy applications on different cloud providers using multiple

Cloud Adapters (PaaS and IaaS levels). Once the application has been deployed, the

an input of the Deployer.

Outputs

A Live Model of the managed applications, which contains the
services used by an application, the location for each of the
application modules and the relationships among modules. Also,
the concrete deployment plan, used to deploy the application
modules in every cloud provider.

Interactions and
Interfaces

The Deployer receives the Deployable plan from the Planner, and
by means of the GUI/Dashboard confirms the DAM. Interaction
with the target platforms, cloud providers, using the needed
services to deploye the application modules. The Monitor is
connected to the Deployer by using synchronization events.

 14 SeaClouds Open Reference Architecture

Deployer Engine uploads/upgrades the Live Model, which contains the data structure

(components and relationship between these) in order to maintain topology of the

application. Currently, SeaClouds is using Brooklyn [13] as Deployer Engine to accomplish

the multideployment of the application components and the Live Model generation and

management. The application components could be deployed over different cloud

providers simultaneously (using jClouds [14] as Cloud Adapter at the IaaS level). Thus, we

define the DAM based on the YAML Blueprint specification of Brooklyn [15].

Figure 8 shows the steps performed during the deployment of a cloud application using

the SeaClodus Deployer, considering the interaction with the rest of components (the full

description can be found in [12]).

Figure 7. Deployment strategy: interaction between components

SeaClodus Monitor

In Table 4 and Figure 9 are presented, respectively, the functionality and architecture of

the Monitor component.

 15 SeaClouds Open Reference Architecture

Table 4. Monitor component description

Figure 8. Architecture of the Monitor component

Component Monitor

Description/
Functionality

The Monitor component gets the set of SLAs of the services in the
selected deployment plan, and is in charge of collecting
monitoring information from the targeted cloud platforms, of
analysing such information, and of presenting the results of such
analysis (through the SeaClouds dashboard) to the Deployment
Manager. The Monitor is also in charge of generating replanning
triggers that are passed (possibly filtered by the Deployment
Manager, depending on the platform configuration) to the Planner
in order to start a reconfiguration process.

Inputs

Available capabilities and a set of the services in the selected
deployment plan SLAs. It has the knowledge about the live model
storing information about how the distribution of the application
modules is done and deployed in cloud providers.

Outputs
Monitoring information related to the metrics and replanning
triggers, alerts.

Interactions and
Interfaces

Connection with the Dashboard to receive the information about
the deployment plan, the SLAs. The Monitor provides the
collected monitoring information (or the results from its analysis)
to the GUI/Dashboard. The Monitor triggers a replanning,
connected to the Planner and the SLA Service, if problematic
situations that require it are detected.

 16 SeaClouds Open Reference Architecture

The Monitor functionality is centralized on the Monitoring Manager, which acts as a

registry for new applications deployed and it is also the mechanism to manage the data

generated from the Monitoring Agent by retrieving it, exposing it through the Monitor API

and storing it for later usage and analysis. As an initial approach, we make use of Brooklyn

as the main Monitoring Agent, taking advantage of the management capabilities and

mechanisms incorporated in this tool, such as sensors, data feeds, enrichers and policies

(we are also studying the incorporation of MODAClouds [16] in the SeaClouds Monitor). In

this way we can define new data retrieving mechanisms for any application managed by

SeaClouds that will be gathered as QoS properties on the Monitor platform.

Figure 10 shows an overall diagram of the interaction between the Monitor and the rest of

components in SeaClouds, checking and analyzing the violations of QoS policies, and

triggering the corresponding alerts. The procedure of registering a new application into

SeaClouds is one of the most useful processes to explain how monitoring data is managed.

The monitoring process starts once the target application enters the deploying phase. At

this point, the Deployer module will notify the Monitoring Manager, through Monitor API,

registering the new application in the Monitoring Manager. Registering process will

require information about the Monitoring Agent in use, so that metrics can be collected

and exposed to the rest of the SeaClouds modules using Monitor API.

Figure 9. Monitoring strategy: interaction between components

 17 SeaClouds Open Reference Architecture

SeaClouds SLA Service

As regards the SLA Service, its functionality and architecture is described in Table 5 and

Figure 11, respectively.

Table 5. SLA Service description

Component SLA Service

Description/
Functionality

The SLA Service is in charge of mapping the low level information
gathered from the Monitor into business level information about
the fulfilment of the SLA defined for a SeaClouds application. It is
responsible for establishing, reviewing and cancelling of complex
end-to-end- Service Level Agreements (SLAs) between Application
Providers and Cloud Suppliers. It covers the complete SLA and
service lifecycle with consistent interlinking of planning and
runtime management aspects by implementing procedures and
methods to evaluate and report Business Level Objectives.

Inputs Monitoring info, and trigger alerts.

Outputs Business SLA info.

Interactions and
Interfaces

While the Planner component will provide the inputs to create the
SLA Agreements, the Deployer component will configure and set
up the SLA Service at runtime, by using the GUI/Dashboard.
Finally, the Monitor component will generate business metrics to
evaluate agreements, by using the monitoring info and according
to the trigger alerts.

 18 SeaClouds Open Reference Architecture

Figure 10. Architecture of the SLA Service

The SLA Service enables the Service Level Agreements (SLA) management of business

oriented policies. The SLA Service is an implementation of the WS-Agreement

specification [17]. The main responsibilities of the SLA service are: generating and storing

WS-Agreement templates and agreements, and assessing that all the agreements (SLA

guarantees) are respected by evaluating the business penalties. Currently, Brooklyn is

used as Monitoring Service to accomplish the constraints evaluation.

Novel Aspects in the SeaClouds Architecture

There are some novel aspects for the proposed SeaClouds platform, and its proposed

architecture, compared to the previous initiatives and efforts, and we would like to

discuss some of them in the following.

Multi-cloud orientation. As described previously, cloud computing has proven a major

commercial success in the last years, with the appearance of many different vendors.

What followed is a need for integrating multiple heterogeneous clouds and to solve the

problem of distributing the services over several providers. In particular, the need of

orchestration is more evident when complex applications move to cloud environments.

With the current cloud technologies, services can only be deployed, managed and

monitored on multiple clouds as stand-alone applications, and not as part of a composite

application. Thus, in a scenario where a complex application is distributed on different

cloud service providers, a solution is needed to manage and orchestrate the distribution

of modules in a sound and adaptive way. The SeaClouds platform is proposed to solve

these problems and advance the field by supporting the orchestration and deployment to

 19 SeaClouds Open Reference Architecture

multiple clouds and management thereon, including resilience and migration of modules

that compose cloud-based applications over multiple and technologically diverse clouds

offerings. Based on the concept of cloud-based services orchestration, SeaClouds can

realise the automated arrangement, coordination, deployment and management of

multiple services as a single aggregated complex application in an efficient and adaptive

way, without the need of modifying the code of the services. This allows organisations to

embrace cloud solutions and avoid risks of unreliability and vendor lock-in. By solving the

problems caused by the multiple-vendor scenario, the SeaClouds architecture would

benefit not only application developers and cloud providers, but also the whole market,

by reducing the adoption barrier for new players.

Separation between (abstract) planning and (concrete) deployment. In the SeaClouds

platform, the planner component is in charge of determining a distribution of application

modules onto multiple available clouds in the form of abstract plans (as deployable

application model), while the deployer component is finally in charge of instantiating a

concrete plan so as to actually deploy the application modules (using the information

defined in the deployable application model, and deploying in the concrete cloud

providers). This is based on a strategy of separating high-level planning and low-level

deployment. With this separation, the SeaClouds platform becomes more scalable and

flexible. Since the plans generated by the component planner are high-level abstract ones,

and they are not bound to a specific language for deployment and management, the

platform is capable of generating the concrete deployment plan either TOSCA-compliant

or CAMP-compliant, or both. Moreover, if some new standard or language for cloud

application deployment and management, which is widely accepted by industry, appears

in the future, the SeaClouds platform can be scaled more easily to adapt to the new

situation, by just modifying the deployer component or adding an interpreter into it for

the new emerged language. This scalability and flexibility can also help SeaClouds to avoid

the risks resulting from the possible delay or even failure of CAMP and TOSCA

standardisation activities, or the case that they are not widely accepted by the industry. In

addition, by this separation, the planner and deployer components can be more easily

reused, respectively, by other developers or initiatives that need them in multi-cloud

scenarios.

Use of TOSCA to represent the application topology. In the SeaClouds platform, the newly

emerged OASIS standard TOSCA is employed to specify the topology of complex

applications. TOSCA enables the interoperable description of application and

infrastructure cloud services, the relationships between parts of the services, and the

operational behavior of these services, independently from the supplier creating the

services, and any particular cloud provider or hosting technology. In line with the main

 20 SeaClouds Open Reference Architecture

goals of TOSCA, the use of this standard will ease automated deployment and

management, and will enhance the portability and reusability of multi-cloud applications

and their components. In addition, it will also allow the SeaClouds platform to generate

TOSCA-compliant orchestration specifications, which will ease the matching and

interoperation with TOSCA-compliant PaaS offerings.

Compatibility with CAMP. The SeaClouds platform is compatible with the novel OASIS

standard CAMP, which is one of the major standards for cloud interoperability. Its

objective is to define standardised artefacts and APIs that a PaaS should offer to allow the

management, building, administration, monitoring and patching of cloud-based

applications. Obviously, the availability of CAMP results can simplify the development of

the Discovery API, Monitoring API, and part of the Multi-Cloud Deployment API of

SeaClouds. By extending and incorporating CAMP, we can cover all future CAMP-

compliant providrs or tools, allowing application developers to manage applications

hosted on multiple clouds environments. Furthermore, by leveraging CAMP, SeaClouds

will attract a significant user base (as this standard has a lot of interest but no reference

implementations, so far) and advance the standard, ensuring the long-term viability of the

benefits implied in SeaClouds, i.e., management and monitoring of underlying providers,

performance optimisation, low impact on the code, formal methods support, flexibility to

include new services and react to problems at runtime. On the other hand, SeaClouds can

provide valuable feedback and contribute to the standardization effort of CAMP, both by

implementing a CAMP-compliant interface towards PaaS providers for management, and

by contributing review proposals that will possibly emerge while specifying properties of

the included orchestrations, adaptation and monitoring. This can be particularly valuable

since, as mentioned, there are no CAMP implementations at the moment, and therefore

the protocol has not been tested.

Compatibility with different target platforms. In addition to the above-mentioned cloud

standards as TOSCA and CAMP, SeaClouds also uses several existing platforms and

initiatives, such as Brooklyn, Whirr, jClouds, Cloud4SOA, and MODAClouds. The

Cloud4SOA project provides an open source interoperable framework for application

developers and PaaS providers. It facilitates developers in the deployment and lifecycle

management of their applications on the PaaS offering that best matches their

computational needs, and ultimately reduces the risks of a vendor lock-in. SeaClouds will

leverage and extend Cloud4SOA outcomes, such as multiplatform matchmaking,

management, cloud monitoring and migration, to ease and accelerate the

implementation. SeaClouds will use Brooklyn's policy-driven functionality to integrate

support for IaaS providers. In addition, Brooklyn's approach to policy modelling and

enforcing will provide guidance for the orchestration, adaptation, and management

 21 SeaClouds Open Reference Architecture

functionality. From these different platforms and initiatives, SeaClouds will take advantage

of the compatibility and reuse of relevant tools and APIs provided by them, and also

obtain a good user base. On the other hand, SeaClouds will definitely be able to contribute

back to them. For example, Brooklyn only targets the IaaS level and has no support for

orchestration. Beyond what Brooklyn provides, SeaClouds will therefore extend policy-

driven functionality to the PaaS level and also add support for adaptation and

orchestration. Thus, Brooklyn can benefit from integrating the proposed functionalities,

especially regarding the integration of adaptation techniques in supported policies,

thereby increasing the adoption rates and the market size of the Brooklyn platform.

Conclusions

In this document, we have presented the results of our research as regards the Open

Reference Architecture of the SeaClouds project. The project aims at providing an open

source framework to address the problem of deploying, managing and reconfiguring

complex applications over multiple and heterogeneous clouds.

The SeaClouds approach works towards achieving “Agility After Deployment” by tackling

the problem from the service orchestration perspective. Following the architecture

proposed, first, the exploitation of the best available offering for each application

component at any time is performed. Then, a complex application, which consists of

modules and (technological and QoS) requirements, is provided as input to the SeaClouds

planner. The latter generates the orchestration by assigning (groups of) modules to

different cloud providers. Such orchestration is then deployed and monitored according to

standard metrics. If requirements are violated, then the SeaClouds monitor will generate

reconfiguration information which leverages the creation of a different orchestration of

the application.

Therefore, the proposed architecture can well support this process of deploying and

managing a cloud application over multiple clouds.

Note that, thanks to the seamless distribution over several different platform and

infrastructure clouds, applications developed in SeaClouds will also take advantage of

higher availability (via inter-cloud redundancy), higher security (via inter-cloud data

partition) and higher throughput (via inter-cloud load balancing).

A key ingredient in our proposal is the use of two OASIS standards initiatives for cloud

interoperability, namely CAMP and TOSCA, which allow us to describe the topology of

user applications independently of cloud providers, provide abstract plans, and discover,

deploy/reconfigure, and monitor our applications independently of the particularities of

the cloud providers.

 22 SeaClouds Open Reference Architecture

Acknowledgements

The SeaClouds project is partially supported by the European Commission grant no. FP/-

ICT-2013-10-610531 (SeaClouds).

Authors

This architecture oriented paper has been created by SeaClouds Scientific and Technical

Team according to the work made by all members of SeaClouds’ Technical and

Management Team:

- ATOS: Francesco D’Andria, Román Sosa

- UMA: Ernesto Pimentel, Javier Cubo, Francisco Durán, Jose Carrasco, Miguel

Barrientos, Adrián Nieto

- UPI: Antonio Brogi, PengWei Wang, Michela Fazzolari, Jacopo Soldani, Ahmad

Ibrahim

- POLIMI: Elisabetta Di Nitto, Raffaela Mirandola, Diego Pérez

- CloudSoft: Alex Heneveld, Andrea Turli

- NURO: Christian Tismer

References

1. P. Mell, T. Grance. The NIST definition of cloud computing. NIST Special Publication,

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf, 2011.

2. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, M. Zaharia. A view of cloud computing. Commun. ACM, no. 4, p. 50-58,

2010.

3. N. Loutas et al. Deliverable D1.1 Requirements Analysis Report. Cloud4SOA Project

Deliverable, 2011.

4. OASIS. CAMP 1.1 (Cloud Application Management for Platforms), Version 1.1,

http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf, 2014.

5. DMTF. Cloud Infrastructure Management Interface (CIMI) Model and REST Interface

over HTTP, An Interface for Managing Cloud Infrastructure, Version 1.0.0,

http://dmtf.org/sites/default/_les/standards/documents/DSP0263 1.0.0.pdf, 2012.

6. DMTF. Virtualization Management (VMAN), http://dmtf.org/standards/vman, 2014.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://dmtf.org/sites/default/_les/standards/documents/DSP0263%201.0.0.pdf
http://dmtf.org/standards/vman

 23 SeaClouds Open Reference Architecture

7. OASIS. TOSCA 1.0 (Topology and Orchestration Specification for Cloud Applications),

Version 1.0, http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf, 2013.

8. A. Parameswaran, A. Chaddha. Cloud Interoperability and Standardization. SETLabs

Briefings - Infosys, vol. 7, no. 7, pp. 19-26, 2012.

9. SeaClouds Project. Deliverable D2.2 Initial architecture and design of the SeaClouds

platform (SeaClouds Consortium), http://seaclouds-project.eu/deliverables/SeaClouds-

D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf, 2014.

10. A. Brogi, J. Carrasco, J. Cubo, F. D'Andria, A. Ibrahim, E. Pimentel, J. Soldani. EU Project

SeaClouds: Adaptive Management of Service-Based Applications Across Multiple Clouds.

Proceedings of the 4th International Conference on Cloud Computing and Services Science

(CLOSER 2014), SCITEPRESS, 2014.

11. SeaClouds Project. Deliverable D3.1 Discovery, Design and Orchestration

Functionalities: First Specification (SeaClouds Consortium), http://seaclouds-

project.eu/deliverables/SEACLOUDS-D3.1-

Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf, 2014.

12. SeaClouds Project. Deliverable D4.1 Definition of the multi-deployment and

monitoring strategies (SeaClouds Consortium), 2014.

13. Apache Brooklyn. https://brooklyn.incubator.apache.org/, 2014.

14. Apache jClouds. The Hava Multi-Cloud Toolkit, https://jclouds.apache.org/, 2014.

15. Brooklyn YAML Blueprint Reference, http://brooklyncentral.github.io/v/0.7.0-
SNAPSHOT/use/guide/defining-applications/yaml-reference.html, CloudSoft, 2014.

16. MODAClouds European Project, http://www.modaclouds.eu/, 2014.

17. Guide to WS-Agreement Language, Open Grid Forum https://packcs-
e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html, 2014.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf
http://seaclouds-project.eu/deliverables/SeaClouds-D2_2-Initial_architecture_and_design_of_the_SeaClouds_platform.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
http://seaclouds-project.eu/deliverables/SEACLOUDS-D3.1-Discovery_Design_and_Orchestration_Functionalities%20_First_Specification.pdf
https://brooklyn.incubator.apache.org/
https://jclouds.apache.org/
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-applications/yaml-reference.html
http://brooklyncentral.github.io/v/0.7.0-SNAPSHOT/use/guide/defining-applications/yaml-reference.html
http://www.modaclouds.eu/
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html
https://packcs-e0.scai.fraunhofer.de/wsag4j/wsag/wsag-language.html

